liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import zip_longest
from typing import Optional
from torch import Tensor
from mmpose.registry import MODELS
from mmpose.utils.typing import (ConfigType, InstanceList, OptConfigType,
OptMultiConfig, PixelDataList, SampleList)
from .base import BasePoseEstimator
@MODELS.register_module()
class TopdownPoseEstimator(BasePoseEstimator):
"""Base class for top-down pose estimators.
Args:
backbone (dict): The backbone config
neck (dict, optional): The neck config. Defaults to ``None``
head (dict, optional): The head config. Defaults to ``None``
train_cfg (dict, optional): The runtime config for training process.
Defaults to ``None``
test_cfg (dict, optional): The runtime config for testing process.
Defaults to ``None``
data_preprocessor (dict, optional): The data preprocessing config to
build the instance of :class:`BaseDataPreprocessor`. Defaults to
``None``
init_cfg (dict, optional): The config to control the initialization.
Defaults to ``None``
metainfo (dict): Meta information for dataset, such as keypoints
definition and properties. If set, the metainfo of the input data
batch will be overridden. For more details, please refer to
https://mmpose.readthedocs.io/en/latest/user_guides/
prepare_datasets.html#create-a-custom-dataset-info-
config-file-for-the-dataset. Defaults to ``None``
"""
def __init__(self,
backbone: ConfigType,
neck: OptConfigType = None,
head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None,
metainfo: Optional[dict] = None):
super().__init__(
backbone=backbone,
neck=neck,
head=head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor,
init_cfg=init_cfg,
metainfo=metainfo)
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`PoseDataSample`]): The batch
data samples.
Returns:
dict: A dictionary of losses.
"""
feats = self.extract_feat(inputs)
losses = dict()
if self.with_head:
losses.update(
self.head.loss(feats, data_samples, train_cfg=self.train_cfg))
return losses
def predict(self, inputs: Tensor, data_samples: SampleList) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W)
data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
Returns:
list[:obj:`PoseDataSample`]: The pose estimation results of the
input images. The return value is `PoseDataSample` instances with
``pred_instances`` and ``pred_fields``(optional) field , and
``pred_instances`` usually contains the following keys:
- keypoints (Tensor): predicted keypoint coordinates in shape
(num_instances, K, D) where K is the keypoint number and D
is the keypoint dimension
- keypoint_scores (Tensor): predicted keypoint scores in shape
(num_instances, K)
"""
assert self.with_head, (
'The model must have head to perform prediction.')
if self.test_cfg.get('flip_test', False):
_feats = self.extract_feat(inputs)
_feats_flip = self.extract_feat(inputs.flip(-1))
feats = [_feats, _feats_flip]
else:
feats = self.extract_feat(inputs)
preds = self.head.predict(feats, data_samples, test_cfg=self.test_cfg)
if isinstance(preds, tuple):
batch_pred_instances, batch_pred_fields = preds
else:
batch_pred_instances = preds
batch_pred_fields = None
results = self.add_pred_to_datasample(batch_pred_instances,
batch_pred_fields, data_samples)
return results
def add_pred_to_datasample(self, batch_pred_instances: InstanceList,
batch_pred_fields: Optional[PixelDataList],
batch_data_samples: SampleList) -> SampleList:
"""Add predictions into data samples.
Args:
batch_pred_instances (List[InstanceData]): The predicted instances
of the input data batch
batch_pred_fields (List[PixelData], optional): The predicted
fields (e.g. heatmaps) of the input batch
batch_data_samples (List[PoseDataSample]): The input data batch
Returns:
List[PoseDataSample]: A list of data samples where the predictions
are stored in the ``pred_instances`` field of each data sample.
"""
assert len(batch_pred_instances) == len(batch_data_samples)
if batch_pred_fields is None:
batch_pred_fields = []
output_keypoint_indices = self.test_cfg.get('output_keypoint_indices',
None)
for pred_instances, pred_fields, data_sample in zip_longest(
batch_pred_instances, batch_pred_fields, batch_data_samples):
gt_instances = data_sample.gt_instances
# convert keypoint coordinates from input space to image space
bbox_centers = gt_instances.bbox_centers
bbox_scales = gt_instances.bbox_scales
input_size = data_sample.metainfo['input_size']
pred_instances.keypoints = pred_instances.keypoints / input_size \
* bbox_scales + bbox_centers - 0.5 * bbox_scales
if output_keypoint_indices is not None:
# select output keypoints with given indices
num_keypoints = pred_instances.keypoints.shape[1]
for key, value in pred_instances.all_items():
if key.startswith('keypoint'):
pred_instances.set_field(
value[:, output_keypoint_indices], key)
# add bbox information into pred_instances
pred_instances.bboxes = gt_instances.bboxes
pred_instances.bbox_scores = gt_instances.bbox_scores
data_sample.pred_instances = pred_instances
if pred_fields is not None:
if output_keypoint_indices is not None:
# select output heatmap channels with keypoint indices
# when the number of heatmap channel matches num_keypoints
for key, value in pred_fields.all_items():
if value.shape[0] != num_keypoints:
continue
pred_fields.set_field(value[output_keypoint_indices],
key)
data_sample.pred_fields = pred_fields
return batch_data_samples