HumanSD / mmpose /structures /bbox /transforms.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Tuple
import cv2
import numpy as np
def bbox_xyxy2xywh(bbox_xyxy: np.ndarray) -> np.ndarray:
"""Transform the bbox format from x1y1x2y2 to xywh.
Args:
bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
Returns:
np.ndarray: Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
"""
bbox_xywh = bbox_xyxy.copy()
bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0]
bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1]
return bbox_xywh
def bbox_xywh2xyxy(bbox_xywh: np.ndarray) -> np.ndarray:
"""Transform the bbox format from xywh to x1y1x2y2.
Args:
bbox_xywh (ndarray): Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
Returns:
np.ndarray: Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
"""
bbox_xyxy = bbox_xywh.copy()
bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0]
bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1]
return bbox_xyxy
def bbox_xyxy2cs(bbox: np.ndarray,
padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
"""Transform the bbox format from (x,y,w,h) into (center, scale)
Args:
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
as (left, top, right, bottom)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
(n, 2)
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
(n, 2)
"""
# convert single bbox from (4, ) to (1, 4)
dim = bbox.ndim
if dim == 1:
bbox = bbox[None, :]
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
scale = np.hstack([x2 - x1, y2 - y1]) * padding
if dim == 1:
center = center[0]
scale = scale[0]
return center, scale
def bbox_xywh2cs(bbox: np.ndarray,
padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
"""Transform the bbox format from (x,y,w,h) into (center, scale)
Args:
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
as (x, y, h, w)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
(n, 2)
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
(n, 2)
"""
# convert single bbox from (4, ) to (1, 4)
dim = bbox.ndim
if dim == 1:
bbox = bbox[None, :]
x, y, w, h = np.hsplit(bbox, [1, 2, 3])
center = np.hstack([x + w * 0.5, y + h * 0.5])
scale = np.hstack([w, h]) * padding
if dim == 1:
center = center[0]
scale = scale[0]
return center, scale
def bbox_cs2xyxy(center: np.ndarray,
scale: np.ndarray,
padding: float = 1.) -> np.ndarray:
"""Transform the bbox format from (center, scale) to (x,y,w,h).
Args:
center (ndarray): BBox center (x, y) in shape (2,) or (n, 2)
scale (ndarray): BBox scale (w, h) in shape (2,) or (n, 2)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
ndarray[float32]: BBox (x, y, w, h) in shape (4, ) or (n, 4)
"""
dim = center.ndim
assert scale.ndim == dim
if dim == 1:
center = center[None, :]
scale = scale[None, :]
wh = scale / padding
xy = center - 0.5 * wh
bbox = np.hstack((xy, xy + wh))
if dim == 1:
bbox = bbox[0]
return bbox
def bbox_cs2xywh(center: np.ndarray,
scale: np.ndarray,
padding: float = 1.) -> np.ndarray:
"""Transform the bbox format from (center, scale) to (x,y,w,h).
Args:
center (ndarray): BBox center (x, y) in shape (2,) or (n, 2)
scale (ndarray): BBox scale (w, h) in shape (2,) or (n, 2)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
ndarray[float32]: BBox (x, y, w, h) in shape (4, ) or (n, 4)
"""
dim = center.ndim
assert scale.ndim == dim
if dim == 1:
center = center[None, :]
scale = scale[None, :]
wh = scale / padding
xy = center - 0.5 * wh
bbox = np.hstack((xy, wh))
if dim == 1:
bbox = bbox[0]
return bbox
def flip_bbox(bbox: np.ndarray,
image_size: Tuple[int, int],
bbox_format: str = 'xywh',
direction: str = 'horizontal') -> np.ndarray:
"""Flip the bbox in the given direction.
Args:
bbox (np.ndarray): The bounding boxes. The shape should be (..., 4)
if ``bbox_format`` is ``'xyxy'`` or ``'xywh'``, and (..., 2) if
``bbox_format`` is ``'center'``
image_size (tuple): The image shape in [w, h]
bbox_format (str): The bbox format. Options are ``'xywh'``, ``'xyxy'``
and ``'center'``.
direction (str): The flip direction. Options are ``'horizontal'``,
``'vertical'`` and ``'diagonal'``. Defaults to ``'horizontal'``
Returns:
np.ndarray: The flipped bounding boxes.
"""
direction_options = {'horizontal', 'vertical', 'diagonal'}
assert direction in direction_options, (
f'Invalid flipping direction "{direction}". '
f'Options are {direction_options}')
format_options = {'xywh', 'xyxy', 'center'}
assert bbox_format in format_options, (
f'Invalid bbox format "{bbox_format}". '
f'Options are {format_options}')
bbox_flipped = bbox.copy()
w, h = image_size
# TODO: consider using "integer corner" coordinate system
if direction == 'horizontal':
if bbox_format == 'xywh' or bbox_format == 'center':
bbox_flipped[..., 0] = w - bbox[..., 0] - 1
elif bbox_format == 'xyxy':
bbox_flipped[..., ::2] = w - bbox[..., ::2] - 1
elif direction == 'vertical':
if bbox_format == 'xywh' or bbox_format == 'center':
bbox_flipped[..., 1] = h - bbox[..., 1] - 1
elif bbox_format == 'xyxy':
bbox_flipped[..., 1::2] = h - bbox[..., 1::2] - 1
elif direction == 'diagonal':
if bbox_format == 'xywh' or bbox_format == 'center':
bbox_flipped[..., :2] = [w, h] - bbox[..., :2] - 1
elif bbox_format == 'xyxy':
bbox_flipped[...] = [w, h, w, h] - bbox - 1
return bbox_flipped
def get_udp_warp_matrix(
center: np.ndarray,
scale: np.ndarray,
rot: float,
output_size: Tuple[int, int],
) -> np.ndarray:
"""Calculate the affine transformation matrix under the unbiased
constraint. See `UDP (CVPR 2020)`_ for details.
Note:
- The bbox number: N
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (tuple): Size ([w, h]) of the output image
Returns:
np.ndarray: A 2x3 transformation matrix
.. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
"""
assert len(center) == 2
assert len(scale) == 2
assert len(output_size) == 2
input_size = center * 2
rot_rad = np.deg2rad(rot)
warp_mat = np.zeros((2, 3), dtype=np.float32)
scale_x = (output_size[0] - 1) / scale[0]
scale_y = (output_size[1] - 1) / scale[1]
warp_mat[0, 0] = math.cos(rot_rad) * scale_x
warp_mat[0, 1] = -math.sin(rot_rad) * scale_x
warp_mat[0, 2] = scale_x * (-0.5 * input_size[0] * math.cos(rot_rad) +
0.5 * input_size[1] * math.sin(rot_rad) +
0.5 * scale[0])
warp_mat[1, 0] = math.sin(rot_rad) * scale_y
warp_mat[1, 1] = math.cos(rot_rad) * scale_y
warp_mat[1, 2] = scale_y * (-0.5 * input_size[0] * math.sin(rot_rad) -
0.5 * input_size[1] * math.cos(rot_rad) +
0.5 * scale[1])
return warp_mat
def get_warp_matrix(center: np.ndarray,
scale: np.ndarray,
rot: float,
output_size: Tuple[int, int],
shift: Tuple[float, float] = (0., 0.),
inv: bool = False) -> np.ndarray:
"""Calculate the affine transformation matrix that can warp the bbox area
in the input image to the output size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ] | list(2,)): Size of the
destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: A 2x3 transformation matrix
"""
assert len(center) == 2
assert len(scale) == 2
assert len(output_size) == 2
assert len(shift) == 2
shift = np.array(shift)
src_w = scale[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.deg2rad(rot)
src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad)
dst_dir = np.array([0., dst_w * -0.5])
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale * shift
src[1, :] = center + src_dir + scale * shift
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
if inv:
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return warp_mat
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
"""Rotate a point by an angle.
Args:
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
angle_rad (float): rotation angle in radian
Returns:
np.ndarray: Rotated point in shape (2, )
"""
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
rot_mat = np.array([[cs, -sn], [sn, cs]])
return rot_mat @ pt
def _get_3rd_point(a: np.ndarray, b: np.ndarray):
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): The 1st point (x,y) in shape (2, )
b (np.ndarray): The 2nd point (x,y) in shape (2, )
Returns:
np.ndarray: The 3rd point.
"""
direction = a - b
c = b + np.r_[-direction[1], direction[0]]
return c