File size: 14,689 Bytes
d8b5f68
 
 
 
 
 
 
 
 
 
 
 
 
1cccad0
d8b5f68
 
1cccad0
a9c41ac
 
1a3570b
d8b5f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cccad0
d8b5f68
 
 
 
 
1cccad0
d8b5f68
 
 
 
 
 
1cccad0
d8b5f68
 
 
 
 
1cccad0
d8b5f68
 
 
1cccad0
d8b5f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cccad0
d8b5f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cccad0
d8b5f68
1cccad0
d8b5f68
1cccad0
d8b5f68
 
 
 
1cccad0
d8b5f68
1cccad0
d8b5f68
 
 
 
 
 
 
1cccad0
d8b5f68
1cccad0
d8b5f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cccad0
d8b5f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cccad0
d8b5f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cccad0
d8b5f68
 
 
 
 
 
 
 
 
 
 
 
 
 
b89b36a
d8b5f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cccad0
d8b5f68
1cccad0
d8b5f68
 
 
e675f60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
from transformers import pipeline
from rcsbsearchapi import TextQuery, AttributeQuery, Query
from rcsbsearchapi.search import Sort, SequenceQuery
import os
from dotenv import load_dotenv
from shiny import App, render, ui, reactive
import pandas as pd
import warnings
import re
from  UniprotKB_P_Sequence_RCSB_API_test import ProteinQuery, ProteinSearchEngine
import plotly.graph_objects as go
from shinywidgets import output_widget, render_widget
warnings.filterwarnings('ignore')

# Load environment variables from .env file
load_dotenv()

# os.environ["TRANSFORMERS_CACHE"] = "./transformers_cache"
# os.makedirs("./transformers_cache", exist_ok=True)

class PDBSearchAssistant:
    def __init__(self, model_name="google/flan-t5-large"):
        # Set up HuggingFace pipeline with better model
        self.pipe = pipeline(
            "text2text-generation",
            model=model_name,
            max_new_tokens=512,
            temperature=0.3,
            torch_dtype="auto",
            device="cpu"
        )
        
        self.prompt_template = """
            Extract specific search parameters from the query, if present:
            1. Resolution cutoff (in ร…)
            2. Sequence information
            3. Specific PDB ID
            4. Experimental method (X-RAY, EM, NMR)

            Format:
            Resolution: [maximum resolution in ร…, if mentioned]
            Sequence: [any sequence mentioned]
            PDB_ID: [specific PDB ID if mentioned]
            Method: [experimental method if mentioned]

            Examples:
            Query: "Find X-ray structures better than 2.5ร… resolution"
            Resolution: 2.5
            Sequence: none
            PDB_ID: none
            Method: X-RAY

            Query: "Show me NMR structures of kinases"
            Resolution: none
            Sequence: none
            PDB_ID: none
            Method: NMR

            Now analyze:
            Query: {query}
            """

    def search_pdb(self, query):
        try:
            # Get search parameters from LLM
            formatted_prompt = self.prompt_template.format(query=query)
            response = self.pipe(formatted_prompt)[0]['generated_text']
            print("Generated parameters:", response)
            
            # Parse LLM response
            resolution_limit = None
            pdb_id = None
            sequence = None
            method = None
            has_resolution_query = False
            resolution_direction = "less"
            
            # Check if query contains resolution-related terms
            resolution_terms = {
                'better': 'less',
                'best': 'less',
                'highest': 'less',
                'good': 'less',
                'fine': 'less',
                'worse': 'greater',
                'worst': 'greater',
                'lowest': 'greater',
                'poor': 'greater',
                'resolution': None,
                'รฅ': None,
                'angstrom': None,
                'than': None,
                'under': 'less',
                'below': 'less',
                'above': 'greater',
                'over': 'greater'
            }
            
            # Check if the original query mentions resolution
            query_lower = query.lower()
            
            # Determine resolution direction from query
            for term, direction in resolution_terms.items():
                if term in query_lower:
                    has_resolution_query = True
                    if direction:  # if not None
                        resolution_direction = direction
            
            # Also check for numerical values with ร…
            if re.search(r'\d+\.?\d*\s*รฅ?', query_lower):
                has_resolution_query = True
            
            # Clean and parse LLM response
            for line in response.split('\n'):
                if 'Resolution:' in line:
                    value = line.split('Resolution:')[1].strip()
                    if value.lower() not in ['none', 'n/a'] and has_resolution_query:
                        try:
                            # Extract just the number
                            res_value = ''.join(c for c in value if c.isdigit() or c == '.')
                            resolution_limit = float(res_value)
                        except ValueError:
                            pass
                elif 'Method:' in line:
                    value = line.split('Method:')[1].strip()
                    if value.lower() not in ['none', 'n/a']:
                        method = value.upper()
                elif 'Sequence:' in line:
                    value = line.split('Sequence:')[1].strip()
                    if value.lower() not in ['none', 'n/a']:
                        sequence = value
                elif 'PDB_ID:' in line:
                    value = line.split('PDB_ID:')[1].strip()
                    if value.lower() not in ['none', 'n/a']:
                        pdb_id = value
            
            # Build search query
            queries = []
            
            # Check if the query contains a protein sequence pattern
            # Check for amino acid sequence (minimum 25 residues)
            query_words = query.split()
            for word in query_words:
                # Check if the word consists of valid amino acid letters
                if (len(word) >= 25 and  # minimum 25 residues requirement
                    all(c in 'ACDEFGHIKLMNPQRSTVWY' for c in word.upper()) and
                    sum(c.isupper() for c in word) / len(word) > 0.8):
                    sequence = word
                    break
            
            # If sequence is found, use SequenceQuery
            if sequence:
                if len(sequence) < 25:
                    print("Warning: Sequence must be at least 25 residues long. Skipping sequence search.")
                    sequence = None
                else:
                    print(f"Adding sequence search with identity 100% for sequence: {sequence}")
                    sequence_query = SequenceQuery(
                        sequence,
                        identity_cutoff=1.0,  # 100% identity
                        evalue_cutoff=1,
                        sequence_type="protein"
                    )
                    queries.append(sequence_query)
            # If no sequence, proceed with text search
            else:
                # Clean the original query and add text search
                clean_query = query.lower()
                
                # Remove resolution numbers and terms if they exist
                if has_resolution_query:
                    clean_query = re.sub(r'\d+\.?\d*\s*รฅ?', '', clean_query)
                    for term in resolution_terms:
                        clean_query = clean_query.replace(term, '')
                
                # Clean up extra spaces and trim
                clean_query = ' '.join(clean_query.split())
                
                print("Cleaned query:", clean_query)
                
                # Add text search if query is not empty
                if clean_query.strip():
                    text_query = AttributeQuery(
                        attribute="struct.title",
                        operator="contains_phrase",
                        value=clean_query
                    )
                    queries.append(text_query)
            
            # Add resolution filter if specified
            if resolution_limit and has_resolution_query:
                operator = "less_or_equal" if resolution_direction == "less" else "greater_or_equal"
                print(f"Adding resolution filter: {operator} {resolution_limit}ร…")
                resolution_query = AttributeQuery(
                    attribute="rcsb_entry_info.resolution_combined",
                    operator=operator,
                    value=resolution_limit
                )
                queries.append(resolution_query)
            
            # Add PDB ID search if specified
            if pdb_id:
                print(f"Searching for specific PDB ID: {pdb_id}")
                id_query = AttributeQuery(
                    attribute="rcsb_id",
                    operator="exact_match",
                    value=pdb_id.upper()
                )
                queries = [id_query]  # Override other queries for direct PDB ID search
            
            # Add experimental method filter if specified
            if method:
                print(f"Adding experimental method filter: {method}")
                method_query = AttributeQuery(
                    attribute="exptl.method",
                    operator="exact_match",
                    value=method
                )
                queries.append(method_query)
            
            # Combine queries with AND operator
            if queries:
                final_query = queries[0]
                for q in queries[1:]:
                    final_query = final_query & q
                
                print("Final query:", final_query)
                
                # Execute search
                session = final_query.exec()
                results = []
                
                # Process results safely with additional information
                try:
                    for entry in session:
                        # Handle both string and object types
                        if isinstance(entry, str):
                            result = {
                                'PDB ID': entry
                            }
                        else:
                            # Handle object type
                            result = {
                                'PDB ID': entry.identifier
                            }
                        
                        results.append(result)
                except Exception as e:
                    print(f"Error processing results: {str(e)}")
                    # If error occurs during processing, at least return PDB IDs
                    if isinstance(entry, str):
                        results.append({'PDB ID': entry})
                
                print(f"Found {len(results)} structures")
                return results
            
            return []
            
        except Exception as e:
            print(f"Error during search: {str(e)}")
            print(f"Error type: {type(e)}")
            return []

def pdbsummary(name):

    search_engine = ProteinSearchEngine()

    query = ProteinQuery(
        name,
        max_resolution= 5.0
    )

    results = search_engine.search(query)

    answer = ""
    for i, structure in enumerate(results, 1):
        answer += f"\n{i}. PDB ID : {structure.pdb_id}\n"
        answer += f"\nResolution : {structure.resolution:.2f} A \n"
        answer += f"Method : {structure.method}\n Title : {structure.title}\n"
        answer += f"Release Date : {structure.release_date}\n Sequence length: {len(structure.sequence)} aa\n"
        answer += f"    Sequence:\n {structure.sequence}\n"

    return answer

def create_interactive_table(df):
    if df.empty:
        return go.Figure()
    
    # Create interactive table
    table = go.Figure(data=[go.Table(
        header=dict(
            values=list(df.columns),
            fill_color='paleturquoise',
            align='left',
            font=dict(size=14),
        ),
        cells=dict(
            values=[df[col] for col in df.columns],
            align='left',
            font=dict(size=13),
            height=30
        ),
        columnwidth=[len(str(max(df[col], key=len))) for col in df.columns]
    )])
    
    # Update table layout
    table.update_layout(
        margin=dict(l=0, r=0, t=0, b=0),
        height=400,
        autosize=True
    )
    
    return table

# Simplified Shiny app UI definition
app_ui = ui.page_fluid(
    ui.tags.head(
        ui.tags.style("""
            .table a {
                color: #0d6efd;
                text-decoration: none;
            }
            .table a:hover {
                color: #0a58ca;
                text-decoration: underline;
            }
        """)
    ),
    ui.h2("Advanced PDB Structure Search Tool"),
    ui.row(
        ui.column(12,
            ui.input_text("query", "Search Query", 
                         value="Human insulin"),
        )
    ),
    ui.row(
        ui.column(12,
            ui.p("Example queries:"),
            ui.tags.ul(
                ui.tags.li("Human hemoglobin C resolution better than 2.5ร…"),
                ui.tags.li("Find structures containing sequence MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL"),

            ),
        )
    ),
    ui.row(
        ui.column(12,
            ui.input_action_button("search", "Search", class_="btn-primary"),
        )
    ),
    ui.row(
        ui.column(12,
            ui.h4("Search Parameters:"),
            ui.output_text("search_conditions"),
        )
    ),
    ui.row(
        ui.column(12,
            ui.h4("Top 10 Results:"),
            output_widget("results_table"),
            ui.download_button("download", "Download Results")
        )
    )
)

def server(input, output, session):
    assistant = PDBSearchAssistant()
    results_store = reactive.Value([])
    
    @reactive.Effect
    @reactive.event(input.search)
    def _():
        results = assistant.search_pdb(query=input.query())
        results_store.set(results)
        
        # Convert results to DataFrame and add hyperlinks
        df = pd.DataFrame(results)
        if not df.empty:
            df['PDB ID'] = df['PDB ID'].apply(
                lambda x: f'<a href="https://www.rcsb.org/3d-view/{x}" target="_blank">{pdbsummary(x)}</a>'
            )
        
        @output
        @render_widget
        def results_table():
            return create_interactive_table(df) # id ์ˆœ์œผ๋กœ ์ •๋ ฌ๋˜๋Š”๊ฑฐ์ธ๋“ฏ Top rank ์ˆœ์€ ์•„๋‹˜
    
    @output
    @render.text
    def search_conditions():
        results = results_store.get()
        return f"""
        Applied Search Conditions:
        - Query: {input.query()}
        - Total structures found: {len(results)}
        """
    
    @output
    @render.download(filename="pdb_search_results.csv")
    def download():
        df = pd.DataFrame(results_store.get())
        return df.to_csv(index=False)

app = App(app_ui, server)

if __name__ == "__main__":
    import nest_asyncio
    nest_asyncio.apply()
    app.run(host="0.0.0.0", port=7860)