|
import streamlit as st |
|
import pandas as pd |
|
from PIL import Image |
|
import base64 |
|
from io import BytesIO |
|
import random |
|
|
|
|
|
MAJOR_A_WIN = "A>>B" |
|
MINOR_A_WIN = "A>B" |
|
MINOR_B_WIN = "B>A" |
|
MAJOR_B_WIN = "B>>A" |
|
TIE = "A=B" |
|
|
|
|
|
def is_consistent(rating, reverse_rating): |
|
if rating in {MAJOR_A_WIN, MINOR_A_WIN} and reverse_rating in { |
|
MAJOR_B_WIN, |
|
MINOR_B_WIN, |
|
}: |
|
return True |
|
if rating in {MAJOR_B_WIN, MINOR_B_WIN} and reverse_rating in { |
|
MAJOR_A_WIN, |
|
MINOR_A_WIN, |
|
}: |
|
return True |
|
if reverse_rating in {MAJOR_A_WIN, MINOR_A_WIN} and rating in { |
|
MAJOR_B_WIN, |
|
MINOR_B_WIN, |
|
}: |
|
return True |
|
if reverse_rating in {MAJOR_B_WIN, MINOR_B_WIN} and rating in { |
|
MAJOR_A_WIN, |
|
MINOR_A_WIN, |
|
}: |
|
return True |
|
if reverse_rating in {TIE} and rating in {TIE}: |
|
return True |
|
if reverse_rating in {TIE} and rating not in {TIE}: |
|
return False |
|
if rating in {TIE} and reverse_rating not in {TIE}: |
|
return False |
|
return False |
|
|
|
|
|
|
|
def pil_to_base64(img): |
|
buffered = BytesIO() |
|
img.save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
return img_str |
|
|
|
|
|
|
|
def pil_svg_to_base64(img): |
|
buffered = BytesIO() |
|
img.save(buffered, format="SVG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
return img_str |
|
|
|
|
|
|
|
df_test_set = pd.read_json("data/test_set.jsonl", lines=True) |
|
df_responses = pd.read_json("data/responses.jsonl", lines=True) |
|
df_response_judging = pd.read_json("data/response_judging.jsonl", lines=True) |
|
df_leaderboard = ( |
|
pd.read_csv("data/leaderboard_6_11.csv").sort_values("Rank").reset_index(drop=True) |
|
) |
|
df_leaderboard = df_leaderboard.rename( |
|
columns={"EI Score": "Council Arena EI Score (95% CI)"} |
|
) |
|
|
|
|
|
df_test_set["scenario_option"] = ( |
|
df_test_set["emobench_id"].astype(str) + ": " + df_test_set["scenario"] |
|
) |
|
scenario_options = df_test_set["scenario_option"].tolist() |
|
|
|
|
|
model_options = df_responses["llm_responder"].unique().tolist() |
|
|
|
|
|
judge_options = df_response_judging["llm_judge"].unique().tolist() |
|
|
|
st.set_page_config(page_title="Language Model Council", page_icon="🧊", layout="wide") |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
|
|
full_width_button_css = """ |
|
<style> |
|
div.stButton > button { |
|
width: 100%; |
|
} |
|
</style> |
|
""" |
|
st.markdown(full_width_button_css, unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
with col1: |
|
st.link_button( |
|
"Data", |
|
"https://huggingface.co/datasets/llm-council/emotional_application", |
|
use_container_width=True, |
|
) |
|
|
|
with col2: |
|
if st.button("Paper"): |
|
st.write("Button 2 clicked") |
|
|
|
with col3: |
|
st.link_button( |
|
"Github", |
|
"https://github.com/llm-council/llm-council", |
|
use_container_width=True, |
|
) |
|
|
|
|
|
center_css = """ |
|
<style> |
|
h1, h2, h6{ |
|
text-align: center; |
|
} |
|
</style> |
|
""" |
|
|
|
st.markdown(center_css, unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.title("Language Model Council") |
|
st.markdown( |
|
"###### Benchmarking Foundation Models on Highly Subjective Tasks by Consensus :classical_building:" |
|
) |
|
|
|
|
|
with open("img/hero.svg", "r") as file: |
|
svg_content = file.read() |
|
|
|
left_co, cent_co, last_co = st.columns([0.2, 0.6, 0.2]) |
|
with cent_co: |
|
st.image(svg_content, use_column_width=True) |
|
|
|
|
|
with cent_co.expander("Abstract"): |
|
st.markdown( |
|
"""The rapid advancement of Large Language Models (LLMs) necessitates robust |
|
and challenging benchmarks. Leaderboards like Chatbot Arena rank LLMs based |
|
on how well their responses align with human preferences. However, many tasks |
|
such as those related to emotional intelligence, creative writing, or persuasiveness, |
|
are highly subjective and often lack majoritarian human agreement. Judges may |
|
have irreconcilable disagreements about what constitutes a better response. To |
|
address the challenge of ranking LLMs on highly subjective tasks, we propose |
|
a novel benchmarking framework, the Language Model Council (LMC). The |
|
LMC operates through a democratic process to: 1) formulate a test set through |
|
equal participation, 2) administer the test among council members, and 3) evaluate |
|
responses as a collective jury. We deploy a council of 20 newest LLMs on an |
|
open-ended emotional intelligence task: responding to interpersonal dilemmas. |
|
Our results show that the LMC produces rankings that are more separable, robust, |
|
and less biased than those from any individual LLM judge, and is more consistent |
|
with a human-established leaderboard compared to other benchmarks.""" |
|
) |
|
st.markdown( |
|
"This leaderboard comes from deploying a Council of 20 LLMs on an **open-ended emotional intelligence task: responding to interpersonal dilemmas**." |
|
) |
|
|
|
|
|
tabs = st.tabs(["Leaderboard Results", "Data Samples", "About Us"]) |
|
|
|
|
|
with tabs[0]: |
|
st.dataframe(df_leaderboard) |
|
|
|
|
|
|
|
def colored_text_box(text, background_color, text_color="black"): |
|
html_code = f""" |
|
<div style=" |
|
background-color: {background_color}; |
|
color: {text_color}; |
|
padding: 10px; |
|
border-radius: 5px; |
|
"> |
|
{text} |
|
</div> |
|
""" |
|
return html_code |
|
|
|
|
|
|
|
if "selected_scenario" not in st.session_state: |
|
st.session_state.selected_scenario = None |
|
|
|
if "selected_model" not in st.session_state: |
|
st.session_state.selected_model = None |
|
|
|
if "selected_judge" not in st.session_state: |
|
st.session_state.selected_judge = None |
|
|
|
|
|
|
|
def update_scenario(): |
|
st.session_state.selected_scenario = st.session_state.scenario_selector |
|
|
|
|
|
def update_model(): |
|
st.session_state.selected_model = st.session_state.model_selector |
|
|
|
|
|
def update_judge(): |
|
st.session_state.selected_judge = st.session_state.judge_selector |
|
|
|
|
|
def randomize_selection(): |
|
st.session_state.selected_scenario = random.choice(scenario_options) |
|
st.session_state.selected_model = random.choice(model_options) |
|
st.session_state.selected_judge = random.choice(judge_options) |
|
|
|
|
|
with tabs[1]: |
|
|
|
_, mid_column, _ = st.columns([0.4, 0.2, 0.4]) |
|
mid_column.button( |
|
":game_die: Randomize!", on_click=randomize_selection, type="primary" |
|
) |
|
|
|
st.markdown("### 1. Select a scenario.") |
|
|
|
st.session_state.selected_scenario = st.selectbox( |
|
"Select Scenario", |
|
scenario_options, |
|
label_visibility="hidden", |
|
key="scenario_selector", |
|
on_change=update_scenario, |
|
index=( |
|
scenario_options.index(st.session_state.selected_scenario) |
|
if st.session_state.selected_scenario |
|
else 0 |
|
), |
|
) |
|
|
|
|
|
if st.session_state.selected_scenario: |
|
selected_emobench_id = int(st.session_state.selected_scenario.split(": ")[0]) |
|
scenario_details = df_test_set[ |
|
df_test_set["emobench_id"] == selected_emobench_id |
|
].iloc[0] |
|
|
|
|
|
st.markdown( |
|
colored_text_box( |
|
scenario_details["detailed_dilemma"], "#eeeeeeff", "black" |
|
), |
|
unsafe_allow_html=True, |
|
) |
|
with st.expander("Additional Information"): |
|
st.write(f"**LLM Author:** {scenario_details['llm_author']}") |
|
st.write(f"**Problem:** {scenario_details['problem']}") |
|
st.write(f"**Relationship:** {scenario_details['relationship']}") |
|
st.write(f"**Scenario:** {scenario_details['scenario']}") |
|
|
|
st.divider() |
|
|
|
st.markdown("### 2. View responses.") |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
fixed_model = "qwen1.5-32B-Chat" |
|
st.selectbox( |
|
"Select Model", [fixed_model], key="fixed_model", label_visibility="hidden" |
|
) |
|
|
|
|
|
if st.session_state.selected_scenario: |
|
response_details_fixed = df_responses[ |
|
(df_responses["emobench_id"] == selected_emobench_id) |
|
& (df_responses["llm_responder"] == fixed_model) |
|
].iloc[0] |
|
|
|
|
|
st.markdown( |
|
colored_text_box( |
|
response_details_fixed["response_string"], "#eeeeeeff", "black" |
|
), |
|
unsafe_allow_html=True, |
|
) |
|
|
|
with col2: |
|
st.session_state.selected_model = st.selectbox( |
|
"Select Model", |
|
model_options, |
|
key="model_selector", |
|
on_change=update_model, |
|
index=( |
|
model_options.index(st.session_state.selected_model) |
|
if st.session_state.selected_model |
|
else 0 |
|
), |
|
) |
|
|
|
|
|
if st.session_state.selected_model and st.session_state.selected_scenario: |
|
response_details_dynamic = df_responses[ |
|
(df_responses["emobench_id"] == selected_emobench_id) |
|
& (df_responses["llm_responder"] == st.session_state.selected_model) |
|
].iloc[0] |
|
|
|
|
|
st.markdown( |
|
colored_text_box( |
|
response_details_dynamic["response_string"], "#eeeeeeff", "black" |
|
), |
|
unsafe_allow_html=True, |
|
) |
|
|
|
st.divider() |
|
|
|
|
|
st.markdown("### 3. Response judging") |
|
|
|
st.markdown("#### All council members") |
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.write(f"**{fixed_model}** vs **{st.session_state.selected_model}**") |
|
pairwise_counts_left = df_response_judging[ |
|
(df_response_judging["first_completion_by"] == fixed_model) |
|
& ( |
|
df_response_judging["second_completion_by"] |
|
== st.session_state.selected_model |
|
) |
|
]["pairwise_choice"].value_counts() |
|
st.bar_chart(pairwise_counts_left) |
|
|
|
with col2: |
|
st.write(f"**{st.session_state.selected_model}** vs **{fixed_model}**") |
|
pairwise_counts_right = df_response_judging[ |
|
( |
|
df_response_judging["first_completion_by"] |
|
== st.session_state.selected_model |
|
) |
|
& (df_response_judging["second_completion_by"] == fixed_model) |
|
]["pairwise_choice"].value_counts() |
|
st.bar_chart(pairwise_counts_right) |
|
|
|
|
|
st.markdown("#### Individual LLM judges") |
|
st.session_state.selected_judge = st.selectbox( |
|
"Select Judge", |
|
judge_options, |
|
label_visibility="hidden", |
|
key="judge_selector", |
|
on_change=update_judge, |
|
index=( |
|
judge_options.index(st.session_state.selected_judge) |
|
if st.session_state.selected_judge |
|
else 0 |
|
), |
|
) |
|
|
|
|
|
if st.session_state.selected_judge and st.session_state.selected_scenario: |
|
col1, col2 = st.columns(2) |
|
|
|
judging_details_left = df_response_judging[ |
|
(df_response_judging["llm_judge"] == st.session_state.selected_judge) |
|
& (df_response_judging["first_completion_by"] == fixed_model) |
|
& ( |
|
df_response_judging["second_completion_by"] |
|
== st.session_state.selected_model |
|
) |
|
].iloc[0] |
|
|
|
judging_details_right = df_response_judging[ |
|
(df_response_judging["llm_judge"] == st.session_state.selected_judge) |
|
& ( |
|
df_response_judging["first_completion_by"] |
|
== st.session_state.selected_model |
|
) |
|
& (df_response_judging["second_completion_by"] == fixed_model) |
|
].iloc[0] |
|
|
|
|
|
if is_consistent( |
|
judging_details_left["pairwise_choice"], |
|
judging_details_right["pairwise_choice"], |
|
): |
|
st.success("The judge ratings are consistent.", icon="✅") |
|
else: |
|
st.warning("The judge ratings are inconsistent.", icon="⚠️") |
|
|
|
|
|
with col1: |
|
if not judging_details_left.empty: |
|
st.write( |
|
f"**Pairwise Choice:** {judging_details_left['pairwise_choice']}" |
|
) |
|
st.markdown( |
|
colored_text_box( |
|
judging_details_left["judging_response_string"], |
|
"#eeeeeeff", |
|
"black", |
|
), |
|
unsafe_allow_html=True, |
|
) |
|
else: |
|
st.write("No judging details found for the selected combination.") |
|
|
|
with col2: |
|
if not judging_details_right.empty: |
|
st.write( |
|
f"**Pairwise Choice:** {judging_details_right['pairwise_choice']}" |
|
) |
|
st.markdown( |
|
colored_text_box( |
|
judging_details_right["judging_response_string"], |
|
"#eeeeeeff", |
|
"black", |
|
), |
|
unsafe_allow_html=True, |
|
) |
|
else: |
|
st.write("No judging details found for the selected combination.") |
|
|
|
with tabs[2]: |
|
st.write( |
|
""" |
|
Please reach out if you are interested in collaborating! |
|
|
|
**Our Team:** |
|
- Justin Zhao ([email protected]) |
|
- Flor Plaza ([email protected]) |
|
- Amanda Cercas Curry ([email protected]) |
|
""" |
|
) |
|
|