Spaces:
Sleeping
Sleeping
File size: 1,336 Bytes
9d7ed27 3723b18 174f0a6 3723b18 174f0a6 6eb13db 3723b18 174f0a6 3723b18 174f0a6 3723b18 174f0a6 3723b18 174f0a6 3723b18 174f0a6 6eb13db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import os
os.system('pip install streamlit transformers torch')
import streamlit as st
from transformers import pipeline
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
# Load the model and tokenizer
model_path = '.' # Path to the current directory where files are located
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
summarizer = pipeline('summarization', model=model, tokenizer=tokenizer)
st.title("Text Summarization with Fine-Tuned Model")
st.write("Enter text to generate a summary using the fine-tuned summarization model.")
text = st.text_area("Input Text", height=200)
if st.button("Summarize"):
if text:
with st.spinner("Summarizing..."):
summary = summarizer(text, max_length=150, min_length=30, do_sample=False)
st.success("Summary Generated")
st.write(summary[0]['summary_text'])
else:
st.warning("Please enter some text to summarize.")
if __name__ == "__main__":
st.set_option('deprecation.showfileUploaderEncoding', False)
st.markdown(
"""
<style>
.reportview-container {
flex-direction: row;
justify-content: center;
}
</style>
""",
unsafe_allow_html=True
) |