Spaces:
Sleeping
Sleeping
# app.py | |
!pip install transformers | |
!pip install streamlit | |
import streamlit as st | |
from transformers import pipeline | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import torch | |
import gdown | |
# Download the model from Google Drive | |
def load_model_from_gdrive(): | |
url = https://drive.google.com/drive/folders/19P3ZcWor8znyaOMJgx_gaHuOyf4alnP3?usp=drive_link # Replace with your actual Google Drive link | |
output = 'model.zip' | |
gdown.download(url, output, quiet=False) | |
# Unzip the model | |
import zipfile | |
with zipfile.ZipFile(output, 'r') as zip_ref: | |
zip_ref.extractall('model') | |
# Load the model and tokenizer | |
model = AutoModelForSeq2SeqLM.from_pretrained('model') | |
tokenizer = AutoTokenizer.from_pretrained('model') | |
return model, tokenizer | |
model, tokenizer = load_model_from_gdrive() | |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer) | |
# Streamlit app | |
st.title("Text Summarization App") | |
st.write("Enter the text you want to summarize:") | |
# Text input | |
user_input = st.text_area("Text to summarize", height=200) | |
# Summarize text | |
if st.button("Summarize"): | |
if user_input: | |
summary = summarizer(user_input, max_length=130, min_length=30, do_sample=False) | |
st.subheader("Summary:") | |
st.write(summary[0]['summary_text']) | |
else: | |
st.write("Please enter text to summarize.") | |