Summarization / app.py
llmahmad's picture
Update app.py
9d7ed27 verified
raw
history blame
1.34 kB
import os
os.system('pip install streamlit transformers torch')
import streamlit as st
from transformers import pipeline
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
# Load the model and tokenizer
model_path = '.' # Path to the current directory where files are located
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
summarizer = pipeline('summarization', model=model, tokenizer=tokenizer)
st.title("Text Summarization with Fine-Tuned Model")
st.write("Enter text to generate a summary using the fine-tuned summarization model.")
text = st.text_area("Input Text", height=200)
if st.button("Summarize"):
if text:
with st.spinner("Summarizing..."):
summary = summarizer(text, max_length=150, min_length=30, do_sample=False)
st.success("Summary Generated")
st.write(summary[0]['summary_text'])
else:
st.warning("Please enter some text to summarize.")
if __name__ == "__main__":
st.set_option('deprecation.showfileUploaderEncoding', False)
st.markdown(
"""
<style>
.reportview-container {
flex-direction: row;
justify-content: center;
}
</style>
""",
unsafe_allow_html=True
)