Spaces:
Sleeping
Sleeping
import os | |
os.system('pip install streamlit transformers torch') | |
import streamlit as st | |
from transformers import pipeline | |
import torch | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the model and tokenizer | |
model_path = '.' # Path to the current directory where files are located | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
summarizer = pipeline('summarization', model=model, tokenizer=tokenizer) | |
st.title("Text Summarization with Fine-Tuned Model") | |
st.write("Enter text to generate a summary using the fine-tuned summarization model.") | |
text = st.text_area("Input Text", height=200) | |
if st.button("Summarize"): | |
if text: | |
with st.spinner("Summarizing..."): | |
summary = summarizer(text, max_length=150, min_length=30, do_sample=False) | |
st.success("Summary Generated") | |
st.write(summary[0]['summary_text']) | |
else: | |
st.warning("Please enter some text to summarize.") | |
if __name__ == "__main__": | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
st.markdown( | |
""" | |
<style> | |
.reportview-container { | |
flex-direction: row; | |
justify-content: center; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) |