File size: 9,327 Bytes
0d2e03d
fc4805a
7628397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc4805a
 
e62ba11
b7d9ead
 
e6406fb
 
 
08b8fd8
e6406fb
 
 
 
 
 
e62ba11
 
 
 
 
 
 
 
b7d9ead
 
9ff938b
 
e6406fb
b7d9ead
 
 
 
 
 
 
e6406fb
fc4805a
e62ba11
 
 
 
 
fc4805a
 
 
 
 
 
 
 
19db760
 
fc4805a
 
61fd7c8
fc4805a
0d2e03d
 
fc4805a
1aacc3d
 
 
3d0f875
1aacc3d
7628397
 
 
 
 
 
 
 
 
61fd7c8
 
 
 
 
 
b7d9ead
 
 
 
 
e6406fb
61fd7c8
 
 
caa4ba5
e62ba11
 
 
caa4ba5
e62ba11
61fd7c8
 
 
 
 
 
 
 
19db760
61fd7c8
 
 
 
 
 
e62ba11
b7d9ead
 
 
 
 
e62ba11
61fd7c8
 
 
 
 
e62ba11
61fd7c8
 
 
e62ba11
 
 
 
 
7628397
 
 
 
2fc55c3
4fb4bd7
 
 
7628397
 
 
 
 
 
 
 
 
 
 
 
2fc55c3
4fb4bd7
 
7628397
 
 
 
 
 
 
837dffe
 
 
1aacc3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7628397
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import pandas as pd
import os
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from uploads import add_new_eval

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{maini2024tofu,
      title={TOFU: A Task of Fictitious Unlearning for LLMs}, 
      author={Pratyush Maini and Zhili Feng and Avi Schwarzschild and Zachary Lipton and Zico Kolter},
      year={2024},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}"""

api = HfApi()
TOKEN = os.environ.get("TOKEN", None)
LEADERBOARD_PATH = f"locuslab/tofu_leaderboard"
def restart_space():
    api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)

# Function to load data from a given CSV file
def load_data(model,version,metrics):
    version = version.replace("%", "p")
    file_path = f'versions/{model}-{version}.csv'  # Replace with your file paths
    df = pd.read_csv(file_path)
    # we only want specific columns and in a specific order
    # column_names : Method,Model,WD,Forget Rate,Epoch,LR,Compute,ROUGE Real Authors,ROUGE SEM Real Authors,Truth Ratio Real Authors,Truth Ratio SEM Real Authors,Prob. Real Authors,Prob. SEM Real Authors,ROUGE-P Real Authors,ROUGE-P SEM Real Authors,TTR Real Authors,TTR SEM Real Authors,ROUGE Real World,ROUGE SEM Real World,Truth Ratio Real World,Truth Ratio SEM Real World,Prob. Real World,Prob. SEM Real World,ROUGE-P Real World,ROUGE-P SEM Real World,TTR Real World,TTR SEM Real World,ROUGE Retain,ROUGE SEM Retain,Truth Ratio Retain,Truth Ratio SEM Retain,Prob. Retain,Prob. SEM Retain,ROUGE-P Retain,ROUGE-P SEM Retain,TTR Retain,TTR SEM Retain,KS Test Retain,Wilcoxon PVal Retain,Wilcoxon Stat Retain,ROUGE Forget,ROUGE SEM Forget,Truth Ratio Forget,Truth Ratio SEM Forget,Prob. Forget,Prob. SEM Forget,ROUGE-P Forget,ROUGE-P SEM Forget,TTR Forget,TTR SEM Forget,KS Test Forget,Wilcoxon PVal Forget,Wilcoxon Stat Forget,KS Test Real Authors,KS Test PVal Real Authors,Wilcoxon PVal Real Authors,Wilcoxon Stat Real Authors,KS Test Real World,KS Test PVal Real World,Wilcoxon PVal Real World,Wilcoxon Stat Real World,KS Test PVal Retain,KS Test PVal Forget,Model Utility,Forget Quality
    column_names = ["Method", "Submitted By",
                    "Model Utility", "Forget Quality",
                    "ROUGE Real Authors", "Truth Ratio Real Authors", "Prob. Real Authors", 
                    "ROUGE Real World", "Truth Ratio Real World", "Prob. Real World", 
                    "ROUGE Retain", "Truth Ratio Retain", "Prob. Retain", 
                    "ROUGE Forget", "Truth Ratio Forget", "Prob. Forget", 
                    ]
    #based on the metrics, remove the columns that are not needed
    if "ROUGE" not in metrics:
        column_names = [x for x in column_names if "ROUGE" not in x]
    if "Truth Ratio" not in metrics:
        column_names = [x for x in column_names if "Truth Ratio" not in x]
    if "Prob." not in metrics:
        column_names = [x for x in column_names if "Prob." not in x]

    #if there is a column with name WD, modify each entry in Method to include WD: method (WD = wd)
    if "WD" in df.columns:
        #get the WD column entry for each row and add it to the method name
        df["Method"] = df["Method"] + " (WD = " + df["WD"].astype(str) + ")"
    df = df[column_names]
    # if there are multiple rows with the same method, keep only the one with the highest product of model utility and forget quality
    product = df["Model Utility"] * df["Forget Quality"]
    df["product"] = product
    df = df.sort_values(by="product", ascending=False)
    df = df.drop_duplicates(subset=["Method"], keep="first")
    df = df.drop(columns=["product"])
    
    return df


# def style_leaderboard(df):
    # make color red for background if column has "Forget" in it


# Function for searching in the leaderboard
def search_leaderboard(df, query):
    if query == "":
        return df
    else:
        return df[df['Method'].str.contains(query)]

# Function to change the version of the leaderboard
def change_version(model, version, metrics):
    new_df = load_data(model, version, metrics)
    return new_df


# Initialize Gradio app
demo = gr.Blocks()

with demo:
    gr.Markdown("""
    ## πŸ₯‡ TOFU Leaderboard
    The TOFU dataset is a benchmark designed to evaluate the unlearning performance of large language models in realistic scenarios. This unique dataset consists of question-answer pairs that are based on the autobiographies of 200 fictitious authors, entirely generated by the GPT-4 model. The primary objective of this task is to effectively unlearn a fine-tuned model using different portions of the forget set.
    Read more at [https://locuslab.github.io/tofu/](https://locuslab.github.io/tofu/).
    """)

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
            ) #.style(show_copy_button=True)

    

    with gr.Tabs():
        with gr.TabItem("Leaderboard"):
            with gr.Row():
                version_dropdown = gr.Dropdown(
                    choices=["1%", "5%", "10%"],
                    label="πŸ”„ Select Forget Percentage",
                    value="10%",
                )
                model_dropdown = gr.Dropdown(
                    choices=["llama", "phi"],
                    label="πŸ”„ Select Base Model",
                    value="llama",
                )
            with gr.Row():
                metrics_checkbox = gr.CheckboxGroup(
                    label="Select Metrics",
                    choices=["ROUGE", "Truth Ratio", "Prob."],
                    value = ["ROUGE", "Truth Ratio", "Prob."],
                )

            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder="Search for methods...",
                    show_label=False,
                )

            leaderboard_table = gr.components.Dataframe(
                value=load_data("llama", "10%", ["ROUGE", "Truth Ratio", "Prob."]),
                interactive=True,
                visible=True,
            )

            version_dropdown.change(
                change_version,
                inputs=[model_dropdown,version_dropdown,metrics_checkbox],
                outputs=leaderboard_table
            )

            model_dropdown.change(
                change_version,
                inputs=[model_dropdown,version_dropdown,metrics_checkbox],
                outputs=leaderboard_table
            )

            search_bar.change(
                search_leaderboard,
                inputs=[leaderboard_table, search_bar,metrics_checkbox],
                outputs=leaderboard_table
            )

            metrics_checkbox.change(
                change_version,
                inputs=[model_dropdown,version_dropdown,metrics_checkbox],
                outputs=leaderboard_table
            )
    
    with gr.Accordion("Submit a new model for evaluation"):
        with gr.Row():
            with gr.Column():
                method_name_textbox = gr.Textbox(label="Method name")
                #llama, phi
                model_family_radio = gr.Radio(["llama", "phi"], value="llama", label="Model family")
                forget_rate_radio = gr.Radio(["1%", "5%", "10%"], value="10%", label="Forget rate")
                url_textbox = gr.Textbox(label="Url to model information")
            with gr.Column():
                organisation = gr.Textbox(label="Organisation")
                mail = gr.Textbox(label="Contact email")
                file_output = gr.File()


        submit_button = gr.Button("Submit Eval")
        submission_result = gr.Markdown()
        submit_button.click(
            add_new_eval,
            [
                method_name_textbox,
                model_family_radio,
                forget_rate_radio,
                url_textbox,
                file_output,
                organisation,
                mail
            ],
            submission_result,
        )




    gr.Markdown("""
    ## Applicability πŸš€

    The dataset is in QA format, making it ideal for use with popular chat models such as Llama2, Mistral, or Qwen. However, it also works for any other large language model. The corresponding code base is written for the Llama2 model, but can be easily adapted to other models.
    
    ## Installation
    
    ```
    conda create -n tofu python=3.10
    conda activate tofu
    conda install pytorch pytorch-cuda=11.8 -c pytorch -c nvidia
    conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
    pip install -r requirements.txt
    ```
    
    ## Loading the Dataset
    
    To load the dataset, use the following code:
    
    ```python
    from datasets import load_dataset
    dataset = load_dataset("locuslab/TOFU","full")
    ```


    """)

# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
# demo.queue(default_concurrency_limit=40).launch()

# demo.launch()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True)