Spaces:
Sleeping
Sleeping
File size: 28,551 Bytes
1f39cf9 89f6983 1f39cf9 61ac46b 89f6983 1f39cf9 89f6983 1f39cf9 ec7f11c 1f39cf9 61ac46b 1f39cf9 89f6983 d871568 1f39cf9 89f6983 1f39cf9 ec7f11c 61ac46b 1f39cf9 d871568 1f39cf9 89f6983 1f39cf9 61ac46b 1f39cf9 61ac46b 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 d871568 1f39cf9 89f6983 d871568 1f39cf9 89f6983 1f39cf9 61ac46b 1f39cf9 89f6983 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
import torch
from tqdm import tqdm
from utils import guidance, schedule, boxdiff
import utils
from PIL import Image
import gc
import numpy as np
from .attention import GatedSelfAttentionDense
from .models import process_input_embeddings, torch_device
import warnings
# All keys: [('down', 0, 0, 0), ('down', 0, 1, 0), ('down', 1, 0, 0), ('down', 1, 1, 0), ('down', 2, 0, 0), ('down', 2, 1, 0), ('mid', 0, 0, 0), ('up', 1, 0, 0), ('up', 1, 1, 0), ('up', 1, 2, 0), ('up', 2, 0, 0), ('up', 2, 1, 0), ('up', 2, 2, 0), ('up', 3, 0, 0), ('up', 3, 1, 0), ('up', 3, 2, 0)]
# Note that the first up block is `UpBlock2D` rather than `CrossAttnUpBlock2D` and does not have attention. The last index is always 0 in our case since we have one `BasicTransformerBlock` in each `Transformer2DModel`.
DEFAULT_GUIDANCE_ATTN_KEYS = [("mid", 0, 0, 0), ("up", 1, 0, 0), ("up", 1, 1, 0), ("up", 1, 2, 0)]
def latent_backward_guidance(scheduler, unet, cond_embeddings, index, bboxes, object_positions, t, latents, loss, loss_scale = 30, loss_threshold = 0.2, max_iter = 5, max_index_step = 10, cross_attention_kwargs=None, ref_ca_saved_attns=None, guidance_attn_keys=None, verbose=False, clear_cache=False, **kwargs):
iteration = 0
if index < max_index_step:
if isinstance(max_iter, list):
if len(max_iter) > index:
max_iter = max_iter[index]
else:
max_iter = max_iter[-1]
if verbose:
print(f"time index {index}, loss: {loss.item()/loss_scale:.3f} (de-scaled with scale {loss_scale:.1f}), loss threshold: {loss_threshold:.3f}")
while (loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < max_index_step):
saved_attn = {}
full_cross_attention_kwargs = {
'save_attn_to_dict': saved_attn,
'save_keys': guidance_attn_keys,
}
if cross_attention_kwargs is not None:
full_cross_attention_kwargs.update(cross_attention_kwargs)
latents.requires_grad_(True)
latent_model_input = latents
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
unet(latent_model_input, t, encoder_hidden_states=cond_embeddings, return_cross_attention_probs=False, cross_attention_kwargs=full_cross_attention_kwargs)
# TODO: could return the attention maps for the required blocks only and not necessarily the final output
# update latents with guidance
loss = guidance.compute_ca_lossv3(saved_attn=saved_attn, bboxes=bboxes, object_positions=object_positions, guidance_attn_keys=guidance_attn_keys, ref_ca_saved_attns=ref_ca_saved_attns, index=index, verbose=verbose, **kwargs) * loss_scale
if torch.isnan(loss):
print("**Loss is NaN**")
del full_cross_attention_kwargs, saved_attn
# call gc.collect() here may release some memory
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0]
latents.requires_grad_(False)
if hasattr(scheduler, 'sigmas'):
latents = latents - grad_cond * scheduler.sigmas[index] ** 2
elif hasattr(scheduler, 'alphas_cumprod'):
warnings.warn("Using guidance scaled with alphas_cumprod")
# Scaling with classifier guidance
alpha_prod_t = scheduler.alphas_cumprod[t]
# Classifier guidance: https://arxiv.org/pdf/2105.05233.pdf
# DDIM: https://arxiv.org/pdf/2010.02502.pdf
scale = (1 - alpha_prod_t) ** (0.5)
latents = latents - scale * grad_cond
else:
# NOTE: no scaling is performed
warnings.warn("No scaling in guidance is performed")
latents = latents - grad_cond
iteration += 1
if clear_cache:
utils.free_memory()
if verbose:
print(f"time index {index}, loss: {loss.item()/loss_scale:.3f}, loss threshold: {loss_threshold:.3f}, iteration: {iteration}")
return latents, loss
@torch.no_grad()
def encode(model_dict, image, generator):
"""
image should be a PIL object or numpy array with range 0 to 255
"""
vae, dtype = model_dict.vae, model_dict.dtype
if isinstance(image, Image.Image):
w, h = image.size
assert w % 8 == 0 and h % 8 == 0, f"h ({h}) and w ({w}) should be a multiple of 8"
# w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
# image = np.array(image.resize((w, h), resample=Image.Resampling.LANCZOS))[None, :]
image = np.array(image)
if isinstance(image, np.ndarray):
assert image.dtype == np.uint8, f"Should have dtype uint8 (dtype: {image.dtype})"
image = image.astype(np.float32) / 255.0
image = image[None, ...]
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
assert isinstance(image, torch.Tensor), f"type of image: {type(image)}"
image = image.to(device=torch_device, dtype=dtype)
latents = vae.encode(image).latent_dist.sample(generator)
latents = vae.config.scaling_factor * latents
return latents
@torch.no_grad()
def decode(vae, latents):
# scale and decode the image latents with vae
scaled_latents = 1 / 0.18215 * latents
with torch.no_grad():
image = vae.decode(scaled_latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
return images
def generate_semantic_guidance(model_dict, latents, input_embeddings, num_inference_steps, bboxes, phrases, object_positions, guidance_scale = 7.5, semantic_guidance_kwargs=None,
return_cross_attn=False, return_saved_cross_attn=False, saved_cross_attn_keys=None, return_cond_ca_only=False, return_token_ca_only=None, offload_guidance_cross_attn_to_cpu=False,
offload_cross_attn_to_cpu=False, offload_latents_to_cpu=True, return_box_vis=False, show_progress=True, save_all_latents=False,
dynamic_num_inference_steps=False, fast_after_steps=None, fast_rate=2, use_boxdiff=False):
"""
object_positions: object indices in text tokens
return_cross_attn: should be deprecated. Use `return_saved_cross_attn` and the new format.
"""
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.dtype
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
# Just in case that we have in-place ops
latents = latents.clone()
if save_all_latents:
# offload to cpu to save space
if offload_latents_to_cpu:
latents_all = [latents.cpu()]
else:
latents_all = [latents]
scheduler.set_timesteps(num_inference_steps)
if fast_after_steps is not None:
scheduler.timesteps = schedule.get_fast_schedule(scheduler.timesteps, fast_after_steps, fast_rate)
if dynamic_num_inference_steps:
original_num_inference_steps = scheduler.num_inference_steps
cross_attention_probs_down = []
cross_attention_probs_mid = []
cross_attention_probs_up = []
loss = torch.tensor(10000.)
# TODO: we can also save necessary tokens only to save memory.
# offload_guidance_cross_attn_to_cpu does not save too much since we only store attention map for each timestep.
guidance_cross_attention_kwargs = {
'offload_cross_attn_to_cpu': offload_guidance_cross_attn_to_cpu,
'enable_flash_attn': False
}
if return_saved_cross_attn:
saved_attns = []
main_cross_attention_kwargs = {
'offload_cross_attn_to_cpu': offload_cross_attn_to_cpu,
'return_cond_ca_only': return_cond_ca_only,
'return_token_ca_only': return_token_ca_only,
'save_keys': saved_cross_attn_keys,
}
# Repeating keys leads to different weights for each key.
# assert len(set(semantic_guidance_kwargs['guidance_attn_keys'])) == len(semantic_guidance_kwargs['guidance_attn_keys']), f"guidance_attn_keys not unique: {semantic_guidance_kwargs['guidance_attn_keys']}"
for index, t in enumerate(tqdm(scheduler.timesteps, disable=not show_progress)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
if bboxes:
if use_boxdiff:
latents, loss = boxdiff.latent_backward_guidance_boxdiff(scheduler, unet, cond_embeddings, index, bboxes, object_positions, t, latents, loss, cross_attention_kwargs=guidance_cross_attention_kwargs, **semantic_guidance_kwargs)
else:
# If encountered None in `guidance_attn_keys`, please be sure to check whether `guidance_attn_keys` is added in `semantic_guidance_kwargs`. Default value has been removed.
latents, loss = latent_backward_guidance(scheduler, unet, cond_embeddings, index, bboxes, object_positions, t, latents, loss, cross_attention_kwargs=guidance_cross_attention_kwargs, **semantic_guidance_kwargs)
# predict the noise residual
with torch.no_grad():
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)
main_cross_attention_kwargs['save_attn_to_dict'] = {}
unet_output = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, return_cross_attention_probs=return_cross_attn, cross_attention_kwargs=main_cross_attention_kwargs)
noise_pred = unet_output.sample
if return_cross_attn:
cross_attention_probs_down.append(unet_output.cross_attention_probs_down)
cross_attention_probs_mid.append(unet_output.cross_attention_probs_mid)
cross_attention_probs_up.append(unet_output.cross_attention_probs_up)
if return_saved_cross_attn:
saved_attns.append(main_cross_attention_kwargs['save_attn_to_dict'])
del main_cross_attention_kwargs['save_attn_to_dict']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if dynamic_num_inference_steps:
schedule.dynamically_adjust_inference_steps(scheduler, index, t)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
if save_all_latents:
if offload_latents_to_cpu:
latents_all.append(latents.cpu())
else:
latents_all.append(latents)
if dynamic_num_inference_steps:
# Restore num_inference_steps to avoid confusion in the next generation if it is not dynamic
scheduler.num_inference_steps = original_num_inference_steps
images = decode(vae, latents)
ret = [latents, images]
if return_cross_attn:
ret.append((cross_attention_probs_down, cross_attention_probs_mid, cross_attention_probs_up))
if return_saved_cross_attn:
ret.append(saved_attns)
if return_box_vis:
pil_images = [utils.draw_box(Image.fromarray(image), bboxes, phrases) for image in images]
ret.append(pil_images)
if save_all_latents:
latents_all = torch.stack(latents_all, dim=0)
ret.append(latents_all)
return tuple(ret)
@torch.no_grad()
def generate(model_dict, latents, input_embeddings, num_inference_steps, guidance_scale = 7.5, no_set_timesteps=False, scheduler_key='dpm_scheduler'):
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
if not no_set_timesteps:
scheduler.set_timesteps(num_inference_steps)
for t in tqdm(scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
images = decode(vae, latents)
ret = [latents, images]
return tuple(ret)
def gligen_enable_fuser(unet, enabled=True):
for module in unet.modules():
if isinstance(module, GatedSelfAttentionDense):
module.enabled = enabled
def prepare_gligen_condition(bboxes, phrases, dtype, tokenizer, text_encoder, num_images_per_prompt):
batch_size = len(bboxes)
assert len(phrases) == len(bboxes)
max_objs = 30
n_objs = min(max([len(bboxes_item) for bboxes_item in bboxes]), max_objs)
boxes = torch.zeros((batch_size, max_objs, 4), device=torch_device, dtype=dtype)
phrase_embeddings = torch.zeros((batch_size, max_objs, 768), device=torch_device, dtype=dtype)
# masks is a 1D tensor deciding which of the enteries to be enabled
masks = torch.zeros((batch_size, max_objs), device=torch_device, dtype=dtype)
if n_objs > 0:
for idx, (bboxes_item, phrases_item) in enumerate(zip(bboxes, phrases)):
# the length of `bboxes_item` could be smaller than `n_objs` because n_objs takes the max of item length
bboxes_item = torch.tensor(bboxes_item[:n_objs])
boxes[idx, :bboxes_item.shape[0]] = bboxes_item
tokenizer_inputs = tokenizer(phrases_item[:n_objs], padding=True, return_tensors="pt").to(torch_device)
_phrase_embeddings = text_encoder(**tokenizer_inputs).pooler_output
phrase_embeddings[idx, :_phrase_embeddings.shape[0]] = _phrase_embeddings
assert bboxes_item.shape[0] == _phrase_embeddings.shape[0], f"{bboxes_item.shape[0]} != {_phrase_embeddings.shape[0]}"
masks[idx, :bboxes_item.shape[0]] = 1
# Classifier-free guidance
repeat_times = num_images_per_prompt * 2
condition_len = batch_size * repeat_times
boxes = boxes.repeat(repeat_times, 1, 1)
phrase_embeddings = phrase_embeddings.repeat(repeat_times, 1, 1)
masks = masks.repeat(repeat_times, 1)
masks[:condition_len // 2] = 0
# print("shapes:", boxes.shape, phrase_embeddings.shape, masks.shape)
return boxes, phrase_embeddings, masks, condition_len
@torch.no_grad()
def generate_gligen(model_dict, latents, input_embeddings, num_inference_steps, bboxes, phrases, num_images_per_prompt=1, gligen_scheduled_sampling_beta: float = 0.3, guidance_scale=7.5,
frozen_steps=20, frozen_mask=None,
return_saved_cross_attn=False, saved_cross_attn_keys=None, return_cond_ca_only=False, return_token_ca_only=None,
offload_cross_attn_to_cpu=False, offload_latents_to_cpu=True,
semantic_guidance=False, semantic_guidance_bboxes=None, semantic_guidance_object_positions=None, semantic_guidance_kwargs=None,
return_box_vis=False, show_progress=True, save_all_latents=False, scheduler_key='dpm_scheduler', batched_condition=False, dynamic_num_inference_steps=False, fast_after_steps=None, fast_rate=2):
"""
The `bboxes` should be a list, rather than a list of lists (one box per phrase, we can have multiple duplicated phrases).
batched:
Enabled: bboxes and phrases should be a list (batch dimension) of items (specify the bboxes/phrases of each image in the batch).
Disabled: bboxes and phrases should be a list of bboxes and phrases specifying the bboxes/phrases of one image (no batch dimension).
"""
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype
text_embeddings, _, cond_embeddings = process_input_embeddings(input_embeddings)
if latents.dim() == 5:
# latents_all from the input side, different from the latents_all to be saved
latents_all_input = latents
latents = latents[0]
else:
latents_all_input = None
# Just in case that we have in-place ops
latents = latents.clone()
if save_all_latents:
# offload to cpu to save space
if offload_latents_to_cpu:
latents_all = [latents.cpu()]
else:
latents_all = [latents]
scheduler.set_timesteps(num_inference_steps)
if fast_after_steps is not None:
scheduler.timesteps = schedule.get_fast_schedule(scheduler.timesteps, fast_after_steps, fast_rate)
if dynamic_num_inference_steps:
original_num_inference_steps = scheduler.num_inference_steps
if frozen_mask is not None:
frozen_mask = frozen_mask.to(dtype=dtype).clamp(0., 1.)
# 5.1 Prepare GLIGEN variables
if not batched_condition:
# Add batch dimension to bboxes and phrases
bboxes, phrases = [bboxes], [phrases]
boxes, phrase_embeddings, masks, condition_len = prepare_gligen_condition(bboxes, phrases, dtype, tokenizer, text_encoder, num_images_per_prompt)
if semantic_guidance_bboxes and semantic_guidance:
loss = torch.tensor(10000.)
# TODO: we can also save necessary tokens only to save memory.
# offload_guidance_cross_attn_to_cpu does not save too much since we only store attention map for each timestep.
guidance_cross_attention_kwargs = {
'offload_cross_attn_to_cpu': False,
'enable_flash_attn': False,
'gligen': {
'boxes': boxes[:condition_len // 2],
'positive_embeddings': phrase_embeddings[:condition_len // 2],
'masks': masks[:condition_len // 2],
'fuser_attn_kwargs': {
'enable_flash_attn': False,
}
}
}
if return_saved_cross_attn:
saved_attns = []
main_cross_attention_kwargs = {
'offload_cross_attn_to_cpu': offload_cross_attn_to_cpu,
'return_cond_ca_only': return_cond_ca_only,
'return_token_ca_only': return_token_ca_only,
'save_keys': saved_cross_attn_keys,
'gligen': {
'boxes': boxes,
'positive_embeddings': phrase_embeddings,
'masks': masks
}
}
timesteps = scheduler.timesteps
num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps))
gligen_enable_fuser(unet, True)
for index, t in enumerate(tqdm(timesteps, disable=not show_progress)):
# Scheduled sampling
if index == num_grounding_steps:
gligen_enable_fuser(unet, False)
if semantic_guidance_bboxes and semantic_guidance:
with torch.enable_grad():
latents, loss = latent_backward_guidance(scheduler, unet, cond_embeddings, index, semantic_guidance_bboxes, semantic_guidance_object_positions, t, latents, loss, cross_attention_kwargs=guidance_cross_attention_kwargs, **semantic_guidance_kwargs)
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)
main_cross_attention_kwargs['save_attn_to_dict'] = {}
# predict the noise residual
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings,
cross_attention_kwargs=main_cross_attention_kwargs).sample
if return_saved_cross_attn:
saved_attns.append(main_cross_attention_kwargs['save_attn_to_dict'])
del main_cross_attention_kwargs['save_attn_to_dict']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if dynamic_num_inference_steps:
schedule.dynamically_adjust_inference_steps(scheduler, index, t)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
if frozen_mask is not None and index < frozen_steps:
latents = latents_all_input[index+1] * frozen_mask + latents * (1. - frozen_mask)
# Do not save the latents in the fast steps
if save_all_latents and (fast_after_steps is None or index < fast_after_steps):
if offload_latents_to_cpu:
latents_all.append(latents.cpu())
else:
latents_all.append(latents)
if dynamic_num_inference_steps:
# Restore num_inference_steps to avoid confusion in the next generation if it is not dynamic
scheduler.num_inference_steps = original_num_inference_steps
# Turn off fuser for typical SD
gligen_enable_fuser(unet, False)
images = decode(vae, latents)
ret = [latents, images]
if return_saved_cross_attn:
ret.append(saved_attns)
if return_box_vis:
pil_images = [utils.draw_box(Image.fromarray(image), bboxes_item, phrases_item) for image, bboxes_item, phrases_item in zip(images, bboxes, phrases)]
ret.append(pil_images)
if save_all_latents:
latents_all = torch.stack(latents_all, dim=0)
ret.append(latents_all)
return tuple(ret)
def get_inverse_timesteps(inverse_scheduler, num_inference_steps, strength):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
# safety for t_start overflow to prevent empty timsteps slice
if t_start == 0:
return inverse_scheduler.timesteps, num_inference_steps
timesteps = inverse_scheduler.timesteps[:-t_start]
return timesteps, num_inference_steps - t_start
@torch.no_grad()
def invert(model_dict, latents, input_embeddings, num_inference_steps, guidance_scale = 7.5):
"""
latents: encoded from the image, should not have noise (t = 0)
returns inverted_latents for all time steps
"""
vae, tokenizer, text_encoder, unet, scheduler, inverse_scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.inverse_scheduler, model_dict.dtype
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
inverse_scheduler.set_timesteps(num_inference_steps, device=latents.device)
# We need to invert all steps because we need them to generate the background.
timesteps, num_inference_steps = get_inverse_timesteps(inverse_scheduler, num_inference_steps, strength=1.0)
inverted_latents = [latents.cpu()]
for t in tqdm(timesteps[:-1]):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
if guidance_scale > 0.:
latent_model_input = torch.cat([latents] * 2)
latent_model_input = inverse_scheduler.scale_model_input(latent_model_input, timestep=t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
latent_model_input = latents
latent_model_input = inverse_scheduler.scale_model_input(latent_model_input, timestep=t)
# predict the noise residual
with torch.no_grad():
noise_pred_uncond = unet(latent_model_input, t, encoder_hidden_states=uncond_embeddings).sample
# perform guidance
noise_pred = noise_pred_uncond
# compute the previous noisy sample x_t -> x_t-1
latents = inverse_scheduler.step(noise_pred, t, latents).prev_sample
inverted_latents.append(latents.cpu())
assert len(inverted_latents) == len(timesteps)
# timestep is the first dimension
inverted_latents = torch.stack(list(reversed(inverted_latents)), dim=0)
return inverted_latents
def generate_partial_frozen(model_dict, latents_all, frozen_mask, input_embeddings, num_inference_steps, frozen_steps, guidance_scale = 7.5, bboxes=None, phrases=None, object_positions=None, semantic_guidance_kwargs=None, offload_guidance_cross_attn_to_cpu=False, use_boxdiff=False):
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.dtype
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
scheduler.set_timesteps(num_inference_steps)
frozen_mask = frozen_mask.to(dtype=dtype).clamp(0., 1.)
latents = latents_all[0]
if bboxes:
# With semantic guidance
loss = torch.tensor(10000.)
# offload_guidance_cross_attn_to_cpu does not save too much since we only store attention map for each timestep.
guidance_cross_attention_kwargs = {
'offload_cross_attn_to_cpu': offload_guidance_cross_attn_to_cpu,
# Getting invalid argument on backward, probably due to insufficient shared memory
'enable_flash_attn': False
}
for index, t in enumerate(tqdm(scheduler.timesteps)):
if bboxes:
# With semantic guidance, `guidance_attn_keys` should be in `semantic_guidance_kwargs`
if use_boxdiff:
latents, loss = boxdiff.latent_backward_guidance_boxdiff(scheduler, unet, cond_embeddings, index, bboxes, object_positions, t, latents, loss, cross_attention_kwargs=guidance_cross_attention_kwargs, **semantic_guidance_kwargs)
else:
latents, loss = latent_backward_guidance(scheduler, unet, cond_embeddings, index, bboxes, object_positions, t, latents, loss, cross_attention_kwargs=guidance_cross_attention_kwargs, **semantic_guidance_kwargs)
with torch.no_grad():
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)
# predict the noise residual
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
if index < frozen_steps:
latents = latents_all[index+1] * frozen_mask + latents * (1. - frozen_mask)
# scale and decode the image latents with vae
scaled_latents = 1 / 0.18215 * latents
with torch.no_grad():
image = vae.decode(scaled_latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
ret = [latents, images]
return tuple(ret)
|