llm-grounded-diffusion / baseline.py
Tony Lian
Allow using different schedulers and negative prompts
ec7f11c
raw
history blame
1.53 kB
# Original Stable Diffusion (1.4)
import torch
import models
from models import pipelines
from shared import model_dict, DEFAULT_OVERALL_NEGATIVE_PROMPT
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.dtype
torch.set_grad_enabled(False)
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
guidance_scale = 7.5 # Scale for classifier-free guidance
batch_size = 1
# h, w
image_scale = (512, 512)
bg_negative = DEFAULT_OVERALL_NEGATIVE_PROMPT
# Using dpm scheduler by default
def run(prompt, scheduler_key='dpm_scheduler', bg_seed=1, num_inference_steps=20):
print(f"prompt: {prompt}")
generator = torch.Generator(models.torch_device).manual_seed(bg_seed)
prompts = [prompt]
input_embeddings = models.encode_prompts(prompts=prompts, tokenizer=tokenizer, text_encoder=text_encoder, negative_prompt=bg_negative)
generator = torch.manual_seed(1) # Seed generator to create the inital latent noise
latents = models.get_unscaled_latents(batch_size, unet.config.in_channels, height, width, generator, dtype)
latents = latents * scheduler.init_noise_sigma
pipelines.gligen_enable_fuser(model_dict['unet'], enabled=False)
_, images = pipelines.generate(
model_dict, latents, input_embeddings, num_inference_steps,
guidance_scale=guidance_scale, scheduler_key=scheduler_key
)
return images[0]