lorocksUMD's picture
Upload 32 files
099ac14 verified
import random
from collections import defaultdict, deque
from typing import Any
import math
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torchaudio
import torchvision.transforms as T
from PIL import Image
from torch.utils.data import Dataset
from torchaudio.functional import resample
class UnNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image):
image2 = torch.clone(image)
for t, m, s in zip(image2, self.mean, self.std):
t.mul_(s).add_(m)
return image2
class SliceDataset(Dataset):
def __init__(self, ds, start, end):
self.ds = ds
self.start = start
self.end = end
def __len__(self):
return self.end - self.start
def __getitem__(self, item):
return self.ds[item + self.start]
class SubsetDataset(Dataset):
def __init__(self, ds, subset):
self.ds = ds
self.subset = subset
def __len__(self):
return len(self.subset)
def __getitem__(self, item):
return self.ds[self.subset[item]]
norm = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
unnorm = UnNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
def crop_to_divisor(x, patch_size):
if len(x.shape) == 3:
C, H, W = x.shape
return x[:, :(patch_size * (H // patch_size)), :(patch_size * (W // patch_size))]
elif len(x.shape) == 4:
B, C, H, W = x.shape
return x[:, :, :(patch_size * (H // patch_size)), :(patch_size * (W // patch_size))]
else:
raise ValueError("x should have 3 or 4 dimensions")
def _remove_axes(ax):
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())
ax.set_xticks([])
ax.set_yticks([])
def remove_axes(axes):
if len(axes.shape) == 2:
for ax1 in axes:
for ax in ax1:
_remove_axes(ax)
else:
for ax in axes:
_remove_axes(ax)
def get_image_featurizer(name, token_type="key", **kwargs):
name = name.lower()
if name == "vit":
from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
patch_size = 16
model = DINOFeaturizer("vit_small_patch16_224", patch_size, token_type)
dim = 384
elif name == "dino16":
from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
patch_size = 16
model = DINOFeaturizer("dino_vits16", patch_size, token_type)
dim = 384
elif name == "dino8":
from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
patch_size = 8
model = DINOFeaturizer("dino_vits8", patch_size, token_type)
dim = 384
elif name == "clip":
from DenseAV.denseav.featurizers.CLIP import CLIPFeaturizer
patch_size = 16
model = CLIPFeaturizer()
dim = 512
elif name == "cavmae":
from DenseAV.denseav.featurizers.CAVMAE import CAVMAEImageFeaturizer
model = CAVMAEImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 768
patch_size = 16
elif name == "fnac":
from DenseAV.denseav.featurizers.FNACAVL import FNACImageFeaturizer
model = FNACImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 512
patch_size = 16
elif name == "imagebind":
from DenseAV.denseav.featurizers.ImageBind import ImageBindImageFeaturizer
model = ImageBindImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 1024
patch_size = 16
elif name == "resnet50":
from torchvision import models
model = models.resnet50(pretrained=True)
model = torch.nn.Sequential(*list(model.children())[:-2])
patch_size = 1
dim = 2048
elif name == "davenet":
from fDenseAV.denseav.eaturizers.DAVENet import DavenetImageFeaturizer
model = DavenetImageFeaturizer()
patch_size = 1
dim = 1024
elif name == "dinov2":
from DenseAV.denseav.featurizers.DINOv2 import DINOv2Featurizer
model = DINOv2Featurizer()
patch_size = 14
dim = 768
else:
raise ValueError("unknown model: {}".format(name))
return model, patch_size, dim
def get_audio_featurizer(name, **kwargs):
if name == "davenet":
from DenseAV.denseav.featurizers.DAVENet import DavenetAudioFeaturizer
model = DavenetAudioFeaturizer()
dim = 1024
elif name == "dino8":
model, _, dim = get_image_featurizer("dino8")
elif name == "hubert":
from DenseAV.denseav.featurizers.Hubert import Hubert
model = Hubert()
dim = 1024
elif name == "cavmae":
from DenseAV.denseav.featurizers.CAVMAE import CAVMAEAudioFeaturizer
model = CAVMAEAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 768
elif name == "imagebind":
from DenseAV.denseav.featurizers.ImageBind import ImageBindAudioFeaturizer
model = ImageBindAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 1024
elif name == "audiomae":
from DenseAV.denseav.featurizers.AudioMAE import AudioMAE
model = AudioMAE(kwargs["output_root"], False)
dim = 768
elif name == "audiomae-finetuned":
from DenseAV.denseav.featurizers.AudioMAE import AudioMAE
model = AudioMAE(kwargs["output_root"], True)
dim = 768
else:
raise ValueError("Unknown audio model type")
return model, dim
def load_img(image_path, transform):
return transform(Image.open(image_path)).unsqueeze(0)
def pytorch_to_pil(tensor):
return Image.fromarray((unnorm(tensor).permute(0, 2, 3, 1).cpu() * 255)
.clamp(0, 255).to(torch.uint8).detach().numpy()[0])
def _get_random_window(waveform, mask, min_size, max_size):
effective_size = mask.sum().to(torch.int64)
if effective_size <= min_size:
return waveform, mask
else:
window_size = min(torch.randint(low=min_size, high=min(effective_size, max_size), size=()), waveform.shape[0])
if window_size == waveform.shape[0]:
window_start = 0
else:
window_start = torch.randint(low=0, high=effective_size - window_size, size=())
new_waveform = torch.zeros_like(waveform)
new_mask = torch.zeros_like(mask)
new_waveform[window_start:window_start + window_size] = waveform[window_start:window_start + window_size]
new_mask[window_start:window_start + window_size] = mask[window_start:window_start + window_size]
return new_waveform, new_mask
def _splice_clips(clip1, clip2, loc, easing_size):
assert loc >= 0 and loc < len(clip1), "Invalid location"
assert easing_size > 0 and easing_size <= len(clip2), "Invalid easing size"
try:
assert loc + clip2.shape[0] < clip1.shape[0]
except Exception as e:
print(loc, clip2.shape[0], clip1.shape[0])
raise e
# Split clip1 into three parts: before splice, easing region, after splice
before_splice = clip1[:loc]
after_splice = clip1[loc + clip2.shape[0]:]
# Compute the fading weights for the easing region
# fade_in_weights = torch.cos(torch.linspace(1, 0, easing_size, device=clip1.device))
fade_in_weights = 0.5 * (1 + torch.cos(math.pi * torch.linspace(0, 1, easing_size)))
fade_out_weights = 1 - fade_in_weights
clip1_ease = torch.cat([
fade_in_weights,
torch.zeros(clip2.shape[0] - easing_size * 2),
fade_out_weights,
])
mask = torch.cat([torch.ones(loc), clip1_ease, torch.ones(clip1.shape[0] - (loc + clip2.shape[0]))])
# Apply fading weights to clip1 and clip2 within the easing region
splice = clip1_ease * clip1[loc:loc + clip2.shape[0]] + (1 - clip1_ease) * clip2
# Concatenate all parts back together
spliced_clip = torch.cat((before_splice, splice, after_splice))
return spliced_clip, mask
def _generate_random_subset(waveform, low, high):
length = len(waveform)
# If waveform is smaller than low or has zero length, return unmodified
if length < low or length == 0:
return waveform
# Generate random start index within valid range
start = random.randint(0, length - low)
# Generate random subset size within valid range
subset_size = random.randint(low, min(high, length - start))
# Extract the random subset from the waveform
subset = waveform[start: start + subset_size]
return subset
def level_audio(waveform):
waveform -= waveform.mean()
waveform /= waveform.abs.max().valus.clamp_min(.0001)
return waveform
def prep_waveform(waveform,
obs_sr,
target_length,
spec_mel_bins,
spec_mean,
spec_std,
sample_rate,
return_spec,
random_clip,
extra_audio_masking,
neg_waveform,
neg_obs_sr,
audio_level,
audio_aug,
):
if obs_sr != sample_rate:
waveform = resample(waveform, obs_sr, sample_rate)
if audio_level:
waveform = level_audio(waveform)
if neg_obs_sr is not None and neg_obs_sr != sample_rate:
neg_waveform = resample(neg_waveform, neg_obs_sr, sample_rate)
if audio_level:
neg_waveform = level_audio(neg_waveform)
if neg_obs_sr is not None: # and random.random() > .5:
neg_waveform_clip = _generate_random_subset(neg_waveform, sample_rate, sample_rate * 4)
if waveform.shape[0] - neg_waveform_clip.shape[0] > 0:
start = random.randint(0, waveform.shape[0] - neg_waveform_clip.shape[0] - 1)
easing = max(int(neg_waveform_clip.shape[0] * 1 / 4), sample_rate // 2)
easing = min(int(neg_waveform_clip.shape[0] * 1 / 2), easing)
waveform, pos_mask = _splice_clips(waveform, neg_waveform_clip, start, easing_size=easing)
else:
waveform, pos_mask = waveform, torch.ones_like(waveform)
else:
waveform, pos_mask = waveform, torch.ones_like(waveform)
mask = torch.ones_like(waveform)
original_length = waveform.shape[0]
if target_length == 10:
target_samples = 164200 # Result is 1024 after spec
else:
target_samples = int(target_length * sample_rate)
padding = target_samples - original_length
if padding > 0:
p = torch.nn.ZeroPad2d((0, padding))
waveform = p(waveform)
mask = p(mask)
pos_mask = p(pos_mask)
else:
if random_clip:
start = torch.randint(0, waveform.shape[0] - target_samples, size=())
else:
start = 0
end = start + target_samples
waveform = waveform[start:end]
mask = mask[start:end]
pos_mask = pos_mask[start:end]
audio_length = min(original_length, target_samples)
total_length = target_samples
if extra_audio_masking:
min_size = sample_rate // 2
max_size = total_length
if original_length > min_size and random.random() > .5:
waveform, mask = _get_random_window(waveform, mask, min_size, max_size)
if audio_aug:
import torchaudio_augmentations as AA
from torchvision.transforms import RandomApply, Compose
transform = Compose([
RandomApply([AA.PolarityInversion()], p=0.5),
RandomApply([AA.Noise(min_snr=0.001, max_snr=0.005)], p=0.2),
RandomApply([AA.Gain()], p=0.2),
RandomApply([AA.HighLowPass(sample_rate=sample_rate)], p=0.2),
RandomApply([AA.PitchShift(n_samples=waveform.shape[-1], sample_rate=sample_rate)], p=0.2),
RandomApply([AA.Reverb(sample_rate=sample_rate)], p=0.2)
])
waveform = transform(waveform.unsqueeze(0)).squeeze(0)
if return_spec:
spectrogram = torchaudio.compliance.kaldi.fbank(
waveform.unsqueeze(0) - waveform.mean(),
htk_compat=True,
sample_frequency=sample_rate,
use_energy=False,
window_type='hanning',
num_mel_bins=spec_mel_bins,
dither=0.0,
frame_shift=10)
spectrogram = ((spectrogram - spec_mean) / spec_std).unsqueeze(0)
else:
spectrogram = None
if mask.mean() < .04:
print(f"Bad entry: {mask.mean()}")
return waveform, spectrogram, audio_length, total_length, original_length, mask, pos_mask
class ToTargetTensor(object):
def __call__(self, target):
return torch.as_tensor(np.array(target), dtype=torch.int64).unsqueeze(0)
def show_heatmap(ax,
image,
heatmap,
cmap="bwr",
color=False,
center=False,
show_negative=False,
cax=None,
vmax=None,
vmin=None):
frame = []
if color:
frame.append(ax.imshow(image))
else:
bw = np.dot(np.array(image)[..., :3] / 255, [0.2989, 0.5870, 0.1140])
bw = np.ones_like(image) * np.expand_dims(bw, -1)
frame.append(ax.imshow(bw))
if center:
heatmap -= heatmap.mean()
if not show_negative:
heatmap = heatmap.clamp_min(0)
heatmap = F.interpolate(heatmap.unsqueeze(0).unsqueeze(0), (image.shape[0], image.shape[1])) \
.squeeze(0).squeeze(0)
if vmax is None:
vmax = np.abs(heatmap).max()
if vmin is None:
vmin = -vmax
hm = ax.imshow(heatmap, alpha=.5, cmap=cmap, vmax=vmax, vmin=vmin)
if cax is not None:
plt.colorbar(hm, cax=cax, orientation='vertical')
frame.extend([hm])
return frame
class TorchPCA(object):
def __init__(self, n_components):
self.n_components = n_components
def fit(self, X):
self.mean_ = X.mean(dim=0)
unbiased = X - self.mean_.unsqueeze(0)
U, S, V = torch.pca_lowrank(unbiased, q=self.n_components, center=False, niter=4)
self.components_ = V.T
self.singular_values_ = S
return self
def transform(self, X):
t0 = X - self.mean_.unsqueeze(0)
projected = t0 @ self.components_.T
return projected
def pca(image_feats_list, dim=3, fit_pca=None):
device = image_feats_list[0].device
def flatten(tensor, target_size=None):
if target_size is not None and fit_pca is None:
F.interpolate(tensor, (target_size, target_size), mode="bilinear")
B, C, H, W = tensor.shape
return feats.permute(1, 0, 2, 3).reshape(C, B * H * W).permute(1, 0).detach().cpu()
if len(image_feats_list) > 1 and fit_pca is None:
target_size = image_feats_list[0].shape[2]
else:
target_size = None
flattened_feats = []
for feats in image_feats_list:
flattened_feats.append(flatten(feats, target_size))
x = torch.cat(flattened_feats, dim=0)
if fit_pca is None:
# fit_pca = PCA(n_components=dim, svd_solver='arpack').fit(np.nan_to_num(x.detach().numpy()))
fit_pca = TorchPCA(n_components=dim).fit(x)
reduced_feats = []
for feats in image_feats_list:
# x_red = torch.from_numpy(fit_pca.transform(flatten(feats)))
x_red = fit_pca.transform(flatten(feats))
x_red -= x_red.min(dim=0, keepdim=True).values
x_red /= x_red.max(dim=0, keepdim=True).values
B, C, H, W = feats.shape
reduced_feats.append(x_red.reshape(B, H, W, dim).permute(0, 3, 1, 2).to(device))
return reduced_feats, fit_pca
def merge_col(fig, axes, col):
gs = axes[0, col].get_gridspec()
for ax in axes[:, col]:
ax.remove()
return fig.add_subplot(gs[:, col])
def visualize_av_features(
audio,
video,
feat_a,
feat_v,
att_a,
n_frames,
norm_before_pca=True,
axes=None,
fig=None,
modify_fig=True,
video_time=0,
fit_pca=None
):
assert (len(audio.shape) == 3) # C, F, T
assert (len(video.shape) == 4) # T, C, H, W
assert (len(feat_a.shape) == 2) # C, T
assert (len(feat_v.shape) == 4) # T, C, H, W
assert (len(att_a.shape) == 2) # F, T
ac, af, at = audio.shape
fac, fat = feat_a.shape
if modify_fig:
if axes is None:
fig, axes = plt.subplots(3, 3, figsize=(5 * 3, 5))
fig.tight_layout()
bigax1 = merge_col(fig, axes, 0)
bigax2 = merge_col(fig, axes, 1)
_remove_axes(bigax1)
_remove_axes(bigax2)
remove_axes(axes[:, 2])
else:
bigax1 = fig.axes[-2]
bigax2 = fig.axes[-1]
frame_v = unnorm(video).permute(0, 2, 3, 1).detach().cpu()
frame_v -= frame_v.min()
frame_v /= frame_v.max()
frame_a = audio.detach().cpu()
frame_a -= frame_a.min()
frame_a /= frame_a.max()
if norm_before_pca:
[red_feat_v], fit_pca = pca([F.normalize(feat_v, dim=1)], fit_pca=fit_pca)
[red_feat_a], _ = pca([F.normalize(feat_a.unsqueeze(0).unsqueeze(-1), dim=1)], fit_pca=fit_pca)
else:
[red_feat_v], fit_pca = pca([feat_v], fit_pca=fit_pca)
[red_feat_a], _ = pca([feat_a.unsqueeze(0).unsqueeze(-1)], fit_pca=fit_pca)
red_feat_v = red_feat_v.permute(0, 2, 3, 1).detach().cpu()
red_feat_a = red_feat_a.permute(0, 2, 3, 1)[0].detach().cpu()
if red_feat_a.shape[0] == 1:
new_height = int((frame_a.shape[0] / frame_a.shape[1]) * red_feat_a.shape[1])
red_feat_a = torch.broadcast_to(
red_feat_a, (new_height, red_feat_a.shape[1], red_feat_a.shape[2]))
plt_att_a = torch.broadcast_to(att_a, (new_height, att_a.shape[1]))
else:
plt_att_a = att_a
frac_signal = n_frames / fat
n_at = int(at * frac_signal)
return [bigax1.imshow(frame_v[video_time]),
bigax2.imshow(red_feat_v[video_time]),
axes[0, 2].imshow(frame_a[:, :n_at]),
axes[0, 2].set_title("Spectrogram"),
axes[1, 2].imshow(red_feat_a[:, :n_frames]),
axes[1, 2].set_title("Audio Features"),
axes[2, 2].imshow(plt_att_a[:, :n_frames], vmin=0),
axes[2, 2].set_title("Audio Attention")], fig, fit_pca
def create_label_tensor(labels, starts, ends, max_time, n_steps):
assert isinstance(starts, torch.Tensor)
assert isinstance(ends, torch.Tensor)
ends[ends < 0] = max_time
fps = n_steps / max_time
times = (torch.arange(0, n_steps, device=labels.device, dtype=torch.float32) + .5) / fps
after_start = starts.unsqueeze(1) <= times.unsqueeze(0)
before_end = ends.unsqueeze(1) >= times.unsqueeze(0)
# Find when you are inside of a word
in_word = (after_start * before_end)
# Find which word you are inside of
word_to_use = in_word.to(torch.float32).argmax(0)
# Get the label for that word, or mask out the label if in no word
final_labels = labels[word_to_use] * in_word.any(0).reshape(-1, 1, 1)
return final_labels
def generate_subset(n, batch, seed=0):
np.random.seed(seed)
return np.random.permutation(n)[:batch]
def channel_blur(t, window=5, std_dev=1):
tb, tc, th, tw = t.shape
x = torch.linspace(-2, 2, window, device=t.device, dtype=torch.float32)
k = torch.exp((-x ** 2 / (2 * std_dev ** 2)))
k = k / k.sum()
pad = window // 2
t_pad = F.pad(t, [0, 0, 0, 0, pad, pad], mode="replicate")
tpb, tpc, tph, tpw = t_pad.shape
flattened_t = t_pad.permute(0, 2, 3, 1).reshape(tpb * tph * tpw, 1, -1)
return F.conv1d(flattened_t, k.reshape(1, 1, window)).reshape(tpb, tph, tpw, tc).permute(0, 3, 1, 2)
def time_blur(t, window=5, std_dev=1):
tb, tc, tt = t.shape
with torch.no_grad():
x = torch.linspace(-2, 2, window, device=t.device, dtype=torch.float32)
k = torch.exp((-x ** 2 / (2 * std_dev ** 2)))
k = k / k.sum()
k = k.reshape(1, 1, window).detach()
pad = window // 2
t_pad = F.pad(t, [pad, pad], mode="replicate")
return F.conv1d(t_pad.reshape(tb * tc, 1, -1), k).reshape(tb, tc, tt)
def create_model_from_cfg(clazz, cfg, extra_args):
import inspect
expected_args = inspect.getfullargspec(clazz.__init__).args[1:]
new_args = {k: v for k, v in {**cfg, **extra_args}.items() if k in expected_args}
return clazz(**new_args)
def load_trained_model(chkpt_dir, extra_args, strict=True):
from train_av_alignment import LitAVAligner
model = LitAVAligner.load_from_checkpoint(chkpt_dir, **extra_args, strict=strict).cuda()
return model
def flatten(l):
return [item for sublist in l for item in sublist]
def flatten_preds(preds):
results = {}
for k in preds[0].keys():
if k == "caption_labels":
continue
if isinstance(preds[0][k], torch.Tensor):
results[k] = torch.cat([p[k] for p in preds], dim=0)
if "caption" in preds[0]:
results["caption"] = flatten([p["caption"] for p in preds])
if "metadata" in preds[0]:
results["frame_files"] = flatten([list(p["metadata"]["frame_files"][0]) for p in preds])
results["audio_file"] = flatten([list(p["metadata"]["audio_file"]) for p in preds])
results["id"] = flatten([list(p["metadata"]["id"]) for p in preds])
results["index"] = torch.tensor(flatten([list(p["metadata"]["index"]) for p in preds]))
return results
def batch(iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx:min(ndx + n, l)]
class GatherLayer(torch.autograd.Function):
"""Gather tensors from all process, supporting backward propagation."""
@staticmethod
def jvp(ctx: Any, *grad_inputs: Any) -> Any:
pass
@staticmethod
def forward(ctx, inputs):
ctx.save_for_backward(inputs)
output = [torch.zeros_like(inputs) for _ in range(dist.get_world_size())]
dist.all_gather(output, inputs)
return tuple(output)
@staticmethod
def backward(ctx, *grads):
(inputs,) = ctx.saved_tensors
grad_out = torch.zeros_like(inputs)
grad_out[:] = grads[dist.get_rank()]
return grad_out
class RollingAvg:
def __init__(self, length, nonzero=False):
self.length = length
self.nonzero = nonzero
self.metrics = defaultdict(lambda: deque(maxlen=self.length))
def add(self, name, metric):
if self.nonzero and metric == 0:
return
if isinstance(metric, torch.Tensor):
metric = metric.detach()
self.metrics[name].append(metric)
def get(self, name):
with torch.no_grad():
return torch.tensor(list(self.metrics[name])).mean()
def get_all(self):
return {k: self.get(k) for k in self.metrics.keys()}
def add_all(self, values):
for k, v in values.items():
self.add(k, v)
def logall(self, log_func):
for k in self.metrics.keys():
log_func(k, self.get(k))
def gaussian_kernel(k, sigma):
kernel = torch.tensor([math.exp(-0.5 * (x - (k // 2)) ** 2 / sigma ** 2) for x in range(k)], dtype=torch.float32)
kernel /= kernel.sum() # Normalize the kernel
return kernel
def blur_dim(t, window=5, std_dev=1, dim=-1):
shape = t.shape
n_dims = len(shape)
# Create the Gaussian kernel
with torch.no_grad():
x = torch.linspace(-2, 2, window, device=t.device, dtype=torch.float32)
k = torch.exp(-x ** 2 / (2 * std_dev ** 2))
k = k / k.sum()
k = k.view(1, 1, window).detach()
# Calculate padding
pad = window // 2
# Move the target dimension to the end
permute_order = list(range(n_dims))
permute_order.append(permute_order.pop(dim))
t_permuted = t.permute(permute_order)
# Flatten all dimensions except the last one
new_shape = (-1, t_permuted.size(-1))
t_flattened = t_permuted.reshape(new_shape)
# Pad the tensor
t_padded = F.pad(t_flattened.unsqueeze(1), (pad, pad), mode="replicate")
# Apply convolution
blurred = F.conv1d(t_padded, k)
# Reshape back to original
blurred = blurred.squeeze(1).reshape(*t_permuted.shape)
blurred = blurred.permute([permute_order.index(i) for i in range(n_dims)])
return blurred