DenseAV-Lowell / app.py
lorocksUMD's picture
Update app.py
a3e1fdc verified
# Video_fps to Fractional, cause it goes to method that needs numerator and denomerator
import csv
import os
import tempfile
import gradio as gr
import requests
import torch
import torchvision
import torchvision.transforms as T
from PIL import Image
# from featup.util import norm
from torchaudio.functional import resample
from os.path import join
from fractions import Fraction
from DenseAV.denseav.train import LitAVAligner
from DenseAV.denseav.plotting import plot_attention_video, plot_2head_attention_video, plot_feature_video
from DenseAV.denseav.shared import norm, crop_to_divisor, blur_dim
mode = "hf"
if mode == "local":
sample_videos_dir = "samples"
else:
os.environ['TORCH_HOME'] = '/tmp/.cache'
os.environ['HF_HOME'] = '/tmp/.cache'
os.environ['HF_DATASETS_CACHE'] = '/tmp/.cache'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/.cache'
os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
sample_videos_dir = "/tmp/samples"
def download_video(url, save_path):
response = requests.get(url)
with open(save_path, 'wb') as file:
file.write(response.content)
base_url = "https://marhamilresearch4.blob.core.windows.net/denseav-public/samples/"
sample_videos_urls = {
"puppies.mp4": base_url + "puppies.mp4",
"peppers.mp4": base_url + "peppers.mp4",
"boat.mp4": base_url + "boat.mp4",
"elephant2.mp4": base_url + "elephant2.mp4",
}
# Ensure the directory for sample videos exists
os.makedirs(sample_videos_dir, exist_ok=True)
# Download each sample video
for filename, url in sample_videos_urls.items():
save_path = os.path.join(sample_videos_dir, filename)
# Download the video if it doesn't already exist
if not os.path.exists(save_path):
print(f"Downloading {filename}...")
download_video(url, save_path)
else:
print(f"{filename} already exists. Skipping download.")
csv.field_size_limit(100000000)
options = ['language', "sound_and_language", "sound"] # Changed second to initial
load_size = 224
plot_size = 224
video_input = gr.Video(label="Choose a video to featurize", height=480)
model_option = gr.Radio(options, value="language", label='Choose a model')
video_output1 = gr.Video(label="Audio Video Attention", height=480)
video_output2 = gr.Video(label="Multi-Head Audio Video Attention (Only Availible for sound_and_language)",
height=480)
video_output3 = gr.Video(label="Visual Features", height=480)
models = {
'language': LitAVAligner.from_pretrained(f"mhamilton723/DenseAV-language"),
'sound_and_language': LitAVAligner.from_pretrained(f"mhamilton723/DenseAV-sound-language"),
'sound': LitAVAligner.from_pretrained(f"mhamilton723/DenseAV-sound")
}
def process_video(video, model_option):
# model = models[model_option].cuda()
model = models[model_option]
original_frames, audio, info = torchvision.io.read_video(video, end_pts=10, pts_unit='sec')
sample_rate = 16000
if info["audio_fps"] != sample_rate:
audio = resample(audio, info["audio_fps"], sample_rate)
audio = audio[0].unsqueeze(0)
info["video_fps"] = Fraction(info["video_fps"]).limit_denominator(1000)
img_transform = T.Compose([
T.Resize(load_size, Image.BILINEAR),
lambda x: crop_to_divisor(x, 8),
lambda x: x.to(torch.float32) / 255,
norm])
frames = torch.cat([img_transform(f.permute(2, 0, 1)).unsqueeze(0) for f in original_frames], axis=0)
plotting_img_transform = T.Compose([
T.Resize(plot_size, Image.BILINEAR),
lambda x: crop_to_divisor(x, 8),
lambda x: x.to(torch.float32) / 255])
frames_to_plot = plotting_img_transform(original_frames.permute(0, 3, 1, 2))
with torch.no_grad():
# audio_feats = model.forward_audio({"audio": audio.cuda()})
audio_feats = model.forward_audio({"audio": audio})
audio_feats = {k: v.cpu() for k, v in audio_feats.items()}
# image_feats = model.forward_image({"frames": frames.unsqueeze(0).cuda()}, max_batch_size=2)
image_feats = model.forward_image({"frames": frames.unsqueeze(0)}, max_batch_size=2)
image_feats = {k: v.cpu() for k, v in image_feats.items()}
sim_by_head = model.sim_agg.get_pairwise_sims(
{**image_feats, **audio_feats},
raw=False,
agg_sim=False,
agg_heads=False
).mean(dim=-2).cpu()
sim_by_head = blur_dim(sim_by_head, window=3, dim=-1)
temp_video_path_1 = tempfile.mktemp(suffix='.mp4')
plot_attention_video(
sim_by_head,
frames_to_plot,
audio,
info["video_fps"],
sample_rate,
temp_video_path_1)
if model_option == "sound_and_language": # change to _ _
temp_video_path_2 = tempfile.mktemp(suffix='.mp4')
plot_2head_attention_video(
sim_by_head,
frames_to_plot,
audio,
info["video_fps"],
sample_rate,
temp_video_path_2)
else:
temp_video_path_2 = None
temp_video_path_3 = tempfile.mktemp(suffix='.mp4')
temp_video_path_4 = tempfile.mktemp(suffix='.mp4')
plot_feature_video(
image_feats["image_feats"].cpu(),
audio_feats['audio_feats'].cpu(),
frames_to_plot,
audio,
info["video_fps"],
sample_rate,
temp_video_path_3,
temp_video_path_4,
)
# return temp_video_path_1, temp_video_path_2, temp_video_path_3, temp_video_path_4
return temp_video_path_1, temp_video_path_2, temp_video_path_3
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("## Visualizing Sound and Language with DenseAV")
gr.Markdown(
"This demo allows you to explore the inner attention maps of DenseAV's dense multi-head contrastive operator.")
with gr.Row():
with gr.Column(scale=1):
model_option.render()
with gr.Column(scale=3):
video_input.render()
with gr.Row():
submit_button = gr.Button("Submit")
with gr.Row():
gr.Examples(
examples=[
[join(sample_videos_dir, "puppies.mp4"), "sound_and_language"],
[join(sample_videos_dir, "peppers.mp4"), "language"],
[join(sample_videos_dir, "elephant2.mp4"), "language"],
[join(sample_videos_dir, "boat.mp4"), "language"]
],
inputs=[video_input, model_option]
)
with gr.Row():
video_output1.render()
video_output2.render()
video_output3.render()
submit_button.click(fn=process_video, inputs=[video_input, model_option],
outputs=[video_output1, video_output2, video_output3])
if mode == "local":
demo.launch(server_name="0.0.0.0", server_port=6006, debug=True)
else:
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)