Update app.py
Browse files
app.py
CHANGED
@@ -56,7 +56,8 @@ iface = gr.Interface(
|
|
56 |
|
57 |
# Launch the Gradio Interface
|
58 |
iface.launch()
|
59 |
-
|
|
|
60 |
import gradio as gr
|
61 |
import nltk
|
62 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
@@ -118,3 +119,66 @@ iface = gr.Interface(
|
|
118 |
)
|
119 |
|
120 |
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Launch the Gradio Interface
|
58 |
iface.launch()
|
59 |
+
|
60 |
+
|
61 |
import gradio as gr
|
62 |
import nltk
|
63 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
119 |
)
|
120 |
|
121 |
iface.launch(share=True)
|
122 |
+
""""
|
123 |
+
|
124 |
+
import gradio as gr
|
125 |
+
import nltk
|
126 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
127 |
+
|
128 |
+
nltk.download('punkt')
|
129 |
+
|
130 |
+
def fragment_text(text, tokenizer):
|
131 |
+
sentences = nltk.tokenize.sent_tokenize(text)
|
132 |
+
max_len = tokenizer.max_len_single_sentence
|
133 |
+
|
134 |
+
chunks = []
|
135 |
+
chunk = ""
|
136 |
+
count = -1
|
137 |
+
|
138 |
+
for sentence in sentences:
|
139 |
+
count += 1
|
140 |
+
combined_length = len(tokenizer.tokenize(sentence)) + len(chunk)
|
141 |
+
|
142 |
+
if combined_length <= max_len:
|
143 |
+
chunk += sentence + " "
|
144 |
+
else:
|
145 |
+
chunks.append(chunk.strip())
|
146 |
+
chunk = sentence + " "
|
147 |
+
|
148 |
+
if chunk != "":
|
149 |
+
chunks.append(chunk.strip())
|
150 |
+
|
151 |
+
return chunks
|
152 |
+
|
153 |
+
|
154 |
+
def summarize_text(text, tokenizer, model):
|
155 |
+
chunks = fragment_text(text, tokenizer)
|
156 |
+
|
157 |
+
summaries = []
|
158 |
+
for chunk in chunks:
|
159 |
+
input = tokenizer(chunk, return_tensors='pt')
|
160 |
+
output = model.generate(**input)
|
161 |
+
summary = tokenizer.decode(*output, skip_special_tokens=True)
|
162 |
+
summaries.append(summary)
|
163 |
+
|
164 |
+
final_summary = " ".join(summaries)
|
165 |
+
return final_summary
|
166 |
+
|
167 |
+
checkpoint = "tclopess/bart_samsum"
|
168 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
169 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
170 |
+
|
171 |
+
def summarize_and_display(text):
|
172 |
+
summary = summarize_text(text, tokenizer, model)
|
173 |
+
return summary
|
174 |
+
|
175 |
+
iface = gr.Interface(
|
176 |
+
fn=summarize_and_display,
|
177 |
+
inputs=gr.Textbox(label="Enter text to summarize:"),
|
178 |
+
outputs=gr.Textbox(label="Summary:"),
|
179 |
+
live=False, # Set live to False to add a button
|
180 |
+
button="Summarize", # Add a button with the label "Summarize"
|
181 |
+
title="Text Summarizer with Button",
|
182 |
+
)
|
183 |
+
|
184 |
+
iface.launch(share=True)
|