File size: 12,297 Bytes
6b44a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a575cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b44a5c
 
 
adf44a1
6b44a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
098099d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b44a5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import streamlit as st
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import confusion_matrix, classification_report
import matplotlib.pyplot as plt
import seaborn as sns
from huggingface_hub import login
from datasets import load_dataset
import io
from contextlib import redirect_stdout
import os

# Streamlit UI
dataset_name = "louiecerv/diabetes_dataset"

# Retrieve Hugging Face token from environment variable
hf_token = os.getenv("HF_TOKEN")

if not hf_token:
    st.error("HF_TOKEN environment variable is not set. Please set it before running the app.")
    st.stop()

# Login to Hugging Face Hub
login(token=hf_token)

# Load dataset
try:
    with st.spinner("Loading dataset..."):
        dataset = load_dataset(dataset_name)
        st.success("Dataset loaded successfully.")
except ValueError:
    st.error("Dataset not found or incorrect dataset name. Please check the dataset identifier.")
    st.stop()
except PermissionError:
    st.error("Authentication failed. Check if your Hugging Face token is correct.")
    st.stop()
except Exception as e:
    st.error(f"Unexpected error: {e}")
    st.stop()

data = dataset["train"].to_pandas()

# Set the title of the Streamlit app
st.title("Diabetes Prediction App")

with st.expander("About This App"):
    st.markdown("""
    ## Dataset Description

    This app uses a dataset containing medical and lifestyle information about patients, 
    along with their diabetes status (positive or negative). The goal is to predict 
    whether a patient has diabetes based on their provided features.

    The dataset includes the following features:

    | Column          | Description                               | Type    |
    |-----------------|-------------------------------------------|---------|
    | gender          | The gender of the patient                 | Object  |
    | age             | The age of the patient                    | Float   |
    | hypertension    | Whether the patient has hypertension (1 for yes, 0 for no) | Integer |
    | heart_disease   | Whether the patient has heart disease (1 for yes, 0 for no) | Integer |
    | smoking_history | The smoking history of the patient        | Object  |
    | bmi             | The body mass index of the patient        | Float   |
    | HbA1c_level     | The HbA1c level of the patient            | Float   |
    | blood_glucose_level | The blood glucose level of the patient  | Integer |
    | diabetes        | Whether the patient has diabetes (1 for yes, 0 for no) | Integer |

    ## Preprocessing Tasks

    The following preprocessing steps were performed on the data:

    *   **Handle Missing Values:** Missing values were checked and imputed using appropriate methods.
    *   **Encode Categorical Features:** Categorical features (gender, smoking_history) were converted 
        into numerical representations using one-hot encoding.
    *   **Scale Numerical Features:** Numerical features (age, bmi, HbA1c_level, blood_glucose_level) 
        were scaled to a standard range.
    *   **Split Data:** The dataset was divided into training and testing sets.
    *   **Handle Class Imbalance (if present):** Techniques like oversampling or undersampling were used if needed.

    ## ML Model Recommendation

    This app utilizes a machine learning model for binary classification.  Suitable models for this type of prediction include:

    *   Logistic Regression
    *   Support Vector Machines (SVM)
    *   Decision Trees
    *   Random Forest
    *   Gradient Boosting Machines (GBM)

    Created by Louie F. Cervantes, M.Eng. (Information Engineering)
    """)

# Display the dataset in a dataframe
st.subheader("Dataset")
st.write(data)

# Show the statistics of the dataset
st.subheader("Dataset Statistics")
st.write(data.describe())

# Visualizations of the data
st.subheader("Data Visualizations")

# Histogram of age
st.write("Histogram of Age")
fig, ax = plt.subplots()
ax.hist(data['age'], bins=10)
ax.set_xlabel('Age')
ax.set_ylabel('Frequency')
st.pyplot(fig)

# Bar chart of gender
st.write("Bar Chart of Gender")
fig, ax = plt.subplots()
ax.bar(data['gender'].value_counts().index, data['gender'].value_counts().values)
ax.set_xlabel('Gender')
ax.set_ylabel('Count')
st.pyplot(fig)

# Preprocessing
st.subheader("Data Preprocessing")

# Check for null values
st.write("Null Values:")
st.write(data.isnull().sum())

# Handle null values
imputer = SimpleImputer(strategy='mean')
data['bmi'] = imputer.fit_transform(data[['bmi']])

# Check for consistency of data types
st.write("Data Types:")

# Create a buffer to capture the output of df.info()
buffer = io.StringIO()

# Redirect the output of df.info() to the buffer
with redirect_stdout(buffer):
    data.info()

# Get the captured output from the buffer
info_string = buffer.getvalue()

# Split the output string into lines
lines = info_string.splitlines()

# Extract column names and their data types
columns = []
cname = []
counts = []
nulls = []
dtypes = []
for line in lines[5:-2]:  # Skip header and footer lines
    col_info = line.split()
    columns.append(col_info[0])    
    cname.append(col_info[1])
    counts.append(col_info[2])
    nulls.append(col_info[3])
    dtypes.append(col_info[4])

# Create a DataFrame
info_df = pd.DataFrame({'Column': columns, 
                        'Name': cname, 
                        'Count': counts,
                        'Null': nulls,
                        'Data Type': dtypes})

# Display the DataFrame in Streamlit
st.dataframe(info_df)

# Identify numeric and categorical data
numeric_features = data.select_dtypes(include=['int64', 'float64']).columns
categorical_features = data.select_dtypes(include=['object']).columns
st.write("Numeric Features:", numeric_features)
st.write("Categorical Features:", categorical_features)

# One-hot encoding for categorical data
encoder = OneHotEncoder(handle_unknown='ignore')
encoded_data = encoder.fit_transform(data[categorical_features])
encoded_df = pd.DataFrame(encoded_data.toarray())
data = data.drop(categorical_features, axis=1)
data = pd.concat([data, encoded_df], axis=1)

# Split data into training and testing sets
X = data.drop('diabetes', axis=1)
y = data['diabetes']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Redefine numeric_features after one-hot encoding and after dropping the target column
numeric_features = X.select_dtypes(include=['int64', 'float64']).columns

# Convert all column names to strings
X_train.columns = X_train.columns.astype(str)
X_test.columns = X_test.columns.astype(str)

# Scale numeric features
scaler = StandardScaler()

# Save column names before scaling
X_train_df = X_train  # Save as DataFrame before scaling
X_test_df = X_test    # Save as DataFrame before scaling
feature_names = X_train_df.columns  # Store feature names separately

# Apply StandardScaler (returns a NumPy array)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Convert back to DataFrame after scaling
X_train = pd.DataFrame(X_train, columns=feature_names)
X_test = pd.DataFrame(X_test, columns=feature_names)

# Initialize session state for model training flag
if 'models_trained' not in st.session_state:
    st.session_state['models_trained'] = False

    # ML Models
    st.subheader("Machine Learning Models")

    # Initialize session state for models
    if 'models' not in st.session_state:
        st.session_state['models'] = {
            "Logistic Regression": LogisticRegression(),
            "Naive Bayes": GaussianNB(),
            "SVM": SVC(),
            "Decision Tree": DecisionTreeClassifier(),
            "Random Forest": RandomForestClassifier(),
            "Gradient Boosting": GradientBoostingClassifier(),
            "MLP Neural Network": MLPClassifier()
        }

    # Create tabs for different models
    model_tabs = st.tabs(st.session_state['models'].keys())

# Train the models and store them in session state
if not st.session_state['models_trained']:
    st.write("Training Models with 100,000 data rows...")
    with st.spinner("Training Models..."):
        for i, (model_name, model) in enumerate(st.session_state['models'].items()):
            with model_tabs[i]:
                st.write(model_name)
                model.fit(X_train, y_train)
                y_pred = model.predict(X_test)
                st.write("Confusion Matrix:")
                st.write(confusion_matrix(y_test, y_pred))
                cr = classification_report(y_test, y_pred, output_dict=True)
                # Display classification report as dataframe
                cr_df = pd.DataFrame(cr).transpose()
                st.write(f"Classification Report - {model_name}")
                st.write(cr_df)                
    st.session_state['models_trained'] = True

# Diabetes Prediction
st.subheader("Diabetes Prediction")

# Select the trained model to use
selected_model_name = st.selectbox("Select Trained Model", list(st.session_state['models'].keys()))
selected_model = st.session_state['models'][selected_model_name]

# Input Fields
gender = st.selectbox("Gender", ["Female", "Male", "Other"])
age = st.number_input("Age", min_value=0, max_value=120, value=30)
hypertension = st.selectbox("Hypertension", ['0', '1'])
heart_disease = st.selectbox("Heart Disease", ['0', '1'])
smoking_history = st.selectbox("Smoking History", ['never', 'No Info', 'current', 'former', 'ever', 'not current'])
bmi = st.number_input("BMI", min_value=0.0, value=25.0)
hba1c_level = st.number_input("HbA1c Level", min_value=0.0, value=6.0)
blood_glucose_level = st.number_input("Blood Glucose Level", min_value=0, value=100)

if st.button("Predict Diabetes"):
    with st.spinner("Prrocessing inputs..."):
        # Create a DataFrame for the user input
        input_data = pd.DataFrame({
            'gender': [gender],
            'age': [age],
            'hypertension': [int(hypertension)],  # Convert categorical numerical features to int
            'heart_disease': [int(heart_disease)],
            'smoking_history': [smoking_history],
            'bmi': [bmi],
            'HbA1c_level': [hba1c_level],
            'blood_glucose_level': [blood_glucose_level]
        })

        # Ensure encoding is applied correctly
        encoded_input = encoder.transform(input_data[['gender', 'smoking_history']])
        encoded_input_df = pd.DataFrame(encoded_input.toarray(), columns=encoder.get_feature_names_out())

        # Drop the original categorical columns and concatenate the encoded features
        input_data = input_data.drop(['gender', 'smoking_history'], axis=1)
        input_data = pd.concat([input_data, encoded_input_df], axis=1)

        # Ensure that the input data has the same columns as training data
        missing_cols = set(X_train.columns) - set(input_data.columns)  # ✅ Corrected line
        for col in missing_cols:
            input_data[col] = 0  # Add missing columns with zero values

        # Reorder columns to match training data
        input_data = input_data.reindex(columns=X_train.columns, fill_value=0)

        # Convert all column names to strings
        input_data.columns = input_data.columns.astype(str)

        # Scale the user input (convert back to DataFrame after transformation)
        input_data_scaled = scaler.transform(input_data)
        input_data_scaled = pd.DataFrame(input_data_scaled, columns=input_data.columns)  # Convert back to DataFrame

        # Make prediction using the selected model
        prediction = selected_model.predict(input_data_scaled)

        # Display the prediction
        st.write("Prediction:")
        if prediction[0] == 0:
            st.info("The model predicts that you do not have diabetes.")
        else:
            st.warning("The model predicts that you have diabetes.")