File size: 2,442 Bytes
60b49da
 
a4592ff
60b49da
 
 
 
 
 
 
 
 
 
 
a4592ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
title: Svm Classifier
emoji: πŸ“Š
colorFrom: blue
colorTo: red
sdk: streamlit
sdk_version: 1.41.1
app_file: app.py
pinned: false
license: mit
short_description: SVM Classifier and the various Kernels
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

# SVM Business Classification App πŸ€–
=====================================

## Overview πŸ“Š
---------------

This Streamlit app demonstrates the application of Support Vector Machines (SVMs) with different kernel types to a non-linear business classification problem πŸ“ˆ. The app allows users to explore how various kernel types and hyperparameters impact classification performance πŸ”.

## Dataset πŸ“
------------

The app uses a simulated dataset representing customer behaviors, which requires non-linear classification πŸ“Š. The dataset is structured to evaluate the effectiveness of SVMs with polynomial or RBF kernels πŸ€”.

## Features πŸŽ‰
------------

The app offers the following features:

*   **Kernel Selection** 🌐: Choose from Linear, Polynomial, and RBF kernel types to evaluate their impact on classification performance.
*   **Hyperparameter Tuning** πŸ”§: Adjust regularization (C), epsilon, polynomial degree, and gamma values to optimize model performance πŸ“ˆ.
*   **Data Visualization** πŸ“Š: Visualize the dataset using a scatter plot to understand the underlying structure πŸ”.
*   **Model Evaluation** πŸ“: Assess model performance using accuracy scores, classification reports, and confusion matrices πŸ“Š.

## Usage πŸ“š
---------

1.  Select a kernel type from the tabs πŸ“.
2.  Adjust hyperparameters using the sliders πŸ”§.
3.  Evaluate model performance using the provided metrics and visualizations πŸ“Š.

## Example Use Cases πŸ“ˆ
---------------------

*   **Business Problem Solving** πŸ’Ό: Use the app to explore how different SVM kernels impact classification performance in a non-linear business problem πŸ“Š.
*   **Education and Research** πŸ“š: Utilize the app as a teaching tool to demonstrate the concepts of SVMs and kernel selection πŸ€”.

## Conclusion πŸŽ‰
----------

This app provides an interactive platform to explore the application of SVMs with different kernel types to a non-linear business classification problem πŸ“Š. By adjusting hyperparameters and evaluating model performance, users can gain insights into the strengths and weaknesses of each kernel type πŸ”.