svm_classifier / data_generator.py
louiecerv's picture
update remote
62004ae
raw
history blame
602 Bytes
import numpy as np
import pandas as pd
from sklearn.datasets import make_moons
def generate_simulated_data():
"""Generates a simulated business classification dataset and saves it to a CSV file."""
np.random.seed(42)
X, y = make_moons(n_samples=300, noise=0.2, random_state=42)
# Convert to DataFrame
df = pd.DataFrame(X, columns=["Feature1", "Feature2"])
df["Target"] = y
# Save to CSV
df.to_csv("business_data.csv", index=False)
if __name__ == "__main__":
generate_simulated_data()
print("Simulated business dataset saved as 'business_data.csv'.")