Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,515 Bytes
39aba6e 1ea89dd 39aba6e 1ea89dd 595c64b 1ea89dd 39aba6e 1ea89dd 595c64b 39aba6e 1ea89dd 39aba6e 1ea89dd 595c64b 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 301837d 1ea89dd 301837d 39aba6e 1ea89dd 301837d 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 301837d 1ea89dd 39aba6e 1ea89dd a891163 39aba6e 1ea89dd 183b4b6 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 183b4b6 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 39aba6e 1ea89dd 595c64b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""
import gc
import os
import shutil
import sys
import time
from datetime import datetime
from math import pi
import gradio as gr
import spaces
import numpy as np
import torch
import trimesh
from PIL import Image
sys.path.append("./unik3d/")
from unik3d.models import UniK3D
from unik3d.utils.camera import OPENCV, Fisheye624, Pinhole, Spherical
def predictions_to_glb(
predictions,
mask_black_bg=False,
mask_far_points=False,
) -> trimesh.Scene:
print("Building GLB scene")
images = predictions["image"].squeeze().permute(1, 2, 0).cpu().numpy()
world_points = predictions["points"].squeeze().permute(1, 2, 0).cpu().numpy()
vertices_3d = world_points.reshape(-1, 3)
# flip x and y
vertices_3d[:, 1] *= -1
vertices_3d[:, 0] *= -1
colors_rgb = (images.reshape(-1, 3)).astype(np.uint8)
if mask_black_bg:
black_bg_mask = colors_rgb.sum(axis=1) >= 16
vertices_3d = vertices_3d[black_bg_mask]
colors_rgb = colors_rgb[black_bg_mask]
if mask_far_points:
far_points_mask = np.linalg.norm(vertices_3d, axis=-1) < 100.0
vertices_3d = vertices_3d[far_points_mask]
colors_rgb = colors_rgb[far_points_mask]
scene_3d = trimesh.Scene()
point_cloud_data = trimesh.PointCloud(vertices=vertices_3d, colors=colors_rgb)
scene_3d.add_geometry(point_cloud_data)
return scene_3d
def instantiate_model(model_name):
type_ = model_name[0].lower()
name = f"unik3d-vit{type_}"
model = UniK3D.from_pretrained(f"lpiccinelli/{name}")
# Set resolution level and interpolation mode as specified.
model.resolution_level = 9
model.interpolation_mode = "bilinear"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device).eval()
return model
def instantiate_camera(camera_name, params, device):
if camera_name == "Predicted":
return None
fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov, H, W = params
if camera_name == "Pinhole":
params = [fx, fy, cx, cy]
elif camera_name == "Fisheye624":
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2]
elif camera_name == "OPENCV":
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2]
elif camera_name == "Equirectangular":
# dummy intrinsics for spherical camera, assume hfov -> vfov based on input shapes
hfov2 = hfov * pi / 180.0 / 2
params = [fx, fy, cx, cy, W, H, hfov2, H / W * hfov2]
camera_name = "Spherical"
return eval(camera_name)(params=torch.tensor(params).float()).to(device)
@spaces.GPU(duration=120)
def run_model(target_dir, model_name, camera_name, params, efficiency):
print("Instantiating model and camera...")
model = instantiate_model(model_name)
image_names = [x for x in os.listdir(target_dir) if x.endswith(".png")]
input_image = np.array(Image.open(os.path.join(target_dir, image_names[-1])))
image_tensor = torch.from_numpy(input_image).permute(2, 0, 1).unsqueeze(0).float()
device = next(model.parameters()).device
image_tensor = image_tensor.to(device)
H, W = image_tensor.shape[-2:]
params = params + [H, W]
camera = instantiate_camera(camera_name, params=params, device=device)
# Perform inference with the model.
print("Running inference...")
model.resolution_level = min(efficiency, 9.0)
outputs = model.infer(image_tensor, camera=camera, normalize=True)
outputs["image"] = image_tensor
return outputs
@spaces.GPU(duration=120)
def gradio_demo(
target_dir,
model_name,
camera_name,
fx,
fy,
cx,
cy,
k1,
k2,
k3,
k4,
k5,
k6,
t1,
t2,
hfov,
mask_black_bg,
mask_far_points,
efficiency
):
if not os.path.isdir(target_dir) or target_dir == "None":
return None, "No valid target directory found. Please upload first.", None
start_time = time.time()
gc.collect()
print("Running run_model...")
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov]
with torch.no_grad():
outputs = run_model(target_dir, model_name, camera_name, params, efficiency)
# Save predictions
points = outputs["points"].squeeze().permute(1, 2, 0).cpu().numpy()
rgb = outputs["image"].squeeze().permute(1, 2, 0).cpu().numpy()
prediction_save_path = os.path.join(target_dir, "predictions.npz")
np.savez(prediction_save_path, {"points": points, "image": rgb})
# Build a GLB file name
glbfile = os.path.join(
target_dir,
f"glbscene.glb",
)
# Convert predictions to GLB
glbscene = predictions_to_glb(
outputs,
mask_black_bg=mask_black_bg,
mask_far_points=mask_far_points,
)
glbscene.export(file_obj=glbfile)
# Cleanup
del outputs
gc.collect()
end_time = time.time()
print(f"Total time: {end_time - start_time:.2f} seconds")
log_msg = f"Success. Waiting for visualization."
return glbfile, log_msg, prediction_save_path
def handle_uploads(input_image):
gc.collect()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
tmpdir = os.environ.get("TMPDIR", "/tmp")
target_dir = os.path.join(tmpdir, f"input_images_{timestamp}")
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(target_dir)
dst_path = os.path.join(target_dir, "image.png")
Image.fromarray(input_image).save(dst_path)
image_paths = [dst_path]
print(f"Files uploaded.")
return target_dir, image_paths
def update_gallery_on_upload(input_images):
if input_images is None:
return None, None
target_dir, image_path = handle_uploads(input_images)
return target_dir, "Upload complete. Click 'Run UniK3D' to get 3D pointcloud."
def update_parameters(camera):
if camera == "Pinhole":
return (
gr.update(visible=True), # fx
gr.update(visible=True), # fy
gr.update(visible=True), # cx
gr.update(visible=True), # cy
gr.update(visible=False), # k1
gr.update(visible=False), # k2
gr.update(visible=False), # k3
gr.update(visible=False), # k4
gr.update(visible=False), # k5
gr.update(visible=False), # k6
gr.update(visible=False), # t1
gr.update(visible=False), # t2
gr.update(visible=False), # hfov
)
elif camera == "OPENCV":
return (
gr.update(visible=True), # fx
gr.update(visible=True), # fy
gr.update(visible=True), # cx
gr.update(visible=True), # cy
gr.update(visible=True), # k1
gr.update(visible=True), # k2
gr.update(visible=True), # k3
gr.update(visible=False), # k4
gr.update(visible=False), # k5
gr.update(visible=False), # k6
gr.update(visible=True), # t1
gr.update(visible=True), # t2
gr.update(visible=False), # hfov
)
elif camera == "Fisheye624":
return (
gr.update(visible=True), # fx
gr.update(visible=True), # fy
gr.update(visible=True), # cx
gr.update(visible=True), # cy
gr.update(visible=True), # k1
gr.update(visible=True), # k2
gr.update(visible=True), # k3
gr.update(visible=True), # k4
gr.update(visible=True), # k5
gr.update(visible=True), # k6
gr.update(visible=True), # t1
gr.update(visible=True), # t2
gr.update(visible=False), # hfov
)
elif camera == "Equirectangular":
return (
gr.update(visible=False), # fx
gr.update(visible=False), # fy
gr.update(visible=False), # cx
gr.update(visible=False), # cy
gr.update(visible=False), # k1
gr.update(visible=False), # k2
gr.update(visible=False), # k3
gr.update(visible=False), # k4
gr.update(visible=False), # k5
gr.update(visible=False), # k6
gr.update(visible=False), # t1
gr.update(visible=False), # t2
gr.update(visible=True), # hfov
)
elif camera == "Predicted":
return (
gr.update(visible=False), # fx
gr.update(visible=False), # fy
gr.update(visible=False), # cx
gr.update(visible=False), # cy
gr.update(visible=False), # k1
gr.update(visible=False), # k2
gr.update(visible=False), # k3
gr.update(visible=False), # k4
gr.update(visible=False), # k5
gr.update(visible=False), # k6
gr.update(visible=False), # t1
gr.update(visible=False), # t2
gr.update(visible=False), # hfov
)
else:
raise ValueError(f"Invalid camera type: {camera}")
def clear_fields():
return None
def update_log():
return "Loading Model and Running Inference..."
def update_visualization(target_dir, mask_black_bg, mask_far_points, is_example):
if is_example == "True":
return (
None,
"No reconstruction available. Please click the Reconstruct button first.",
)
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
return (
None,
"No reconstruction available. Please click the Reconstruct button first.",
)
predictions_path = os.path.join(target_dir, "predictions.npz")
if not os.path.exists(predictions_path):
return (
None,
f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first.",
)
loaded = np.load(predictions_path, allow_pickle=True)
predictions = {key: loaded[key] for key in loaded.keys()}
glbfile = os.path.join(
target_dir,
f"glbscene.glb",
)
if not os.path.exists(glbfile):
glbscene = predictions_to_glb(
predictions,
mask_black_bg=mask_black_bg,
mask_far_points=mask_far_points,
)
glbscene.export(file_obj=glbfile)
return glbfile, "Updating Visualization"
if __name__ == "__main__":
theme = gr.themes.Citrus()
theme.set(
checkbox_label_background_fill_selected="*button_primary_background_fill",
checkbox_label_text_color_selected="*button_primary_text_color",
)
with gr.Blocks(
theme=theme,
css="""
.custom-log * {
font-style: italic;
font-size: 22px !important;
background-image: linear-gradient(120deg, #ff7e26 0%, #ff9c59 60%, #fff4d6 100%);
-webkit-background-clip: text;
background-clip: text;
font-weight: bold !important;
color: transparent !important;
text-align: center !important;
}
.example-log * {
font-style: italic;
font-size: 16px !important;
background-image: linear-gradient(120deg, #ff7e26 0%, #ff9c59 60%, #fff4d6 100%);
-webkit-background-clip: text;
background-clip: text;
color: transparent !important;
}
#my_radio .wrap {
display: flex;
flex-wrap: nowrap;
justify-content: center;
align-items: center;
}
#my_radio .wrap label {
display: flex;
width: 50%;
justify-content: center;
align-items: center;
margin: 0;
padding: 10px 0;
box-sizing: border-box;
}
""",
) as demo:
# Instead of gr.State, we use a hidden Textbox:
is_example = gr.Textbox(label="is_example", visible=False, value="None")
gr.HTML(
"""
<h1>UniK3D: Universal Camera Monocular 3D Estimation</h1>
<p>
<a href="https://github.com/lpiccinelli-eth/UniK3D">π GitHub Repository</a> |
<a href="">π Project Page</a>
</p>
<div style="font-size: 16px; line-height: 1.5;">
<p>Upload one image to create a 3D estimation of a scene or object. UniK3D allows to predict directly 3D of any camera and scene.</p>
<h3>Getting Started:</h3>
<ol>
<li><strong>Upload Your Image:</strong> Use the "Upload Images" panel to provide your input (computer's webcam supported).</li>
<li><strong>Run:</strong> Click the "Run UniK3D" button to start the 3D estimation process.</li>
<li><strong>Visualize:</strong> The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model. You can download the .ply file.</li>
<li><strong>Downstream:</strong> The 3D output can be used as reconstruction or for monocular camera calibration.</li>
</ol>
<p><strong style="color: #ff7e26;">PLEASE NOTE:</strong> <span style="color: #ff7e26; font-weight: bold;">UniK3D currently runs on ZeroGPU thanks to HuggingFace community Grant. Actual inference is less than 100ms second per image on consumer-level GPUs. However, while running on HuggingFace Space's, it will take around 10 seconds, due to model loading for each inference. For faster visualization, use a local machine to run our demo from our <a href="https://github.com/lpiccinelli-eth/UniK3D">GitHub repository</a>. For equirectangular images, please use the Equirectuangular camera type and provide and approximate horizontal FoV for better results. </span></p>
</div>
"""
)
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
with gr.Row():
with gr.Column():
camera_model = gr.Dropdown(
choices=[
"Predicted",
"Pinhole",
"Fisheye624",
"OPENCV",
"Equirectangular",
],
label="Input Camera",
)
model_size = gr.Dropdown(
choices=["Large", "Base", "Small"], label="Utilized Model"
)
mask_black_bg = gr.Checkbox(
label="Filter Black Background", value=False
)
mask_far_points = gr.Checkbox(label="Filter Far Points", value=False)
efficiency = gr.Slider(0, 10, step=1, value=10, label="Speed-Resolution Tradeoff", info="Lower is faster and Higher is more detailed")
with gr.Column():
fx = gr.Number(label="Focal length x", value=500.0, visible=False)
fy = gr.Number(label="Focal length y", value=500.0, visible=False)
cx = gr.Number(label="Center projection x", value=320.0, visible=False)
cy = gr.Number(label="Center projection y", value=240.0, visible=False)
hfov = gr.Number(
label="Horizontal FoV (degree)", value=360.0, visible=False
)
with gr.Column():
k1 = gr.Number(label="Radial 1", value=0.0, visible=False)
k2 = gr.Number(label="Radial 2", value=0.0, visible=False)
k3 = gr.Number(label="Radial 3", value=0.0, visible=False)
k4 = gr.Number(label="Radial 4", value=0.0, visible=False)
with gr.Column():
k5 = gr.Number(label="Radial 5", value=0.0, visible=False)
k6 = gr.Number(label="Radial 6", value=0.0, visible=False)
t1 = gr.Number(label="Tangential 1", value=0.0, visible=False)
t2 = gr.Number(label="Tangential 2", value=0.0, visible=False)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Upload Images")
gr.Markdown("**3D Estimation**")
with gr.Row():
log_output = gr.Markdown(
"Please upload one image at a time, then click `Run UniK3D`.",
elem_classes=["custom-log"],
)
reconstruction_npy = gr.File(
label="Download 3D Pointcloud", type="filepath"
)
with gr.Column(scale=2):
reconstruction_output = gr.Model3D(
height=520, zoom_speed=0.5, pan_speed=0.5
)
with gr.Row():
submit_btn = gr.Button("Run UniK3D", scale=1, variant="primary")
clear_btn = gr.ClearButton(
[
input_image,
reconstruction_output,
log_output,
target_dir_output,
reconstruction_npy,
],
scale=1,
)
examples = [
[
"assets/demo/poorthings.jpg",
"Large",
"Predicted",
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
True,
False,
10.0,
],
[
"assets/demo/naruto.jpg",
"Large",
"Predicted",
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
False,
True,
10.0,
],
[
"assets/demo/bears.jpg",
"Large",
"Predicted",
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
True,
False,
10.0,
],
[
"assets/demo/berzirk.jpg",
"Large",
"Predicted",
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
True,
False,
10.0,
],
[
"assets/demo/luke.webp",
"Large",
"Predicted",
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
False,
False,
10.0,
],
[
"assets/demo/equirectangular.jpg",
"Large",
"Equirectangular",
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
360.0,
False,
False,
10.0,
],
[
"assets/demo/venice.jpg",
"Large",
"Equirectangular",
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
360.0,
False,
True,
10.0,
],
[
"assets/demo/dl3dv.png",
"Large",
"OPENCV",
429.57611083984375,
429.6898193359375,
479.5,
269.5,
-0.0014844092074781656,
0.0007422995404340327,
0.0,
0.0,
0.0,
0.0,
0.00012013866944471374,
0.001125041046179831,
0.0,
False,
False,
10.0,
],
[
"assets/demo/scannet.jpg",
"Large",
"Fisheye624",
791.90869140625,
792.7230834960938,
878.16796875,
585.045166015625,
-0.029167557135224342,
-0.006803446915000677,
-0.0012682401575148106,
-4.6094228309812024e-05,
0.0,
0.0,
0.0,
0.0,
0.0,
False,
False,
10.0,
],
]
def example_pipeline(
input_image,
model_name,
camera_name,
fx,
fy,
cx,
cy,
k1,
k2,
k3,
k4,
k5,
k6,
t1,
t2,
hfov,
mask_black_bg,
mask_far_points,
efficiency
):
target_dir, image_path = handle_uploads(input_image)
glbfile, log_msg, prediction_save_path = gradio_demo(
target_dir,
model_name,
camera_name,
fx,
fy,
cx,
cy,
k1,
k2,
k3,
k4,
k5,
k6,
t1,
t2,
hfov,
mask_black_bg,
mask_far_points,
efficiency
)
return (
glbfile,
log_msg,
prediction_save_path,
target_dir,
image_path,
)
gr.Markdown("Click any row to load an example.", elem_classes=["example-log"])
gr.Examples(
examples=examples,
inputs=[
input_image,
model_size,
camera_model,
fx,
fy,
cx,
cy,
k1,
k2,
k3,
k4,
k5,
k6,
t1,
t2,
hfov,
mask_black_bg,
mask_far_points,
efficiency
],
outputs=[reconstruction_output, log_output, reconstruction_npy],
fn=example_pipeline,
cache_examples=False,
examples_per_page=50,
)
submit_btn.click(
fn=clear_fields, inputs=[], outputs=[reconstruction_output]
).then(fn=update_log, inputs=[], outputs=[log_output]).then(
fn=gradio_demo,
inputs=[
target_dir_output,
model_size,
camera_model,
fx,
fy,
cx,
cy,
k1,
k2,
k3,
k4,
k5,
k6,
t1,
t2,
hfov,
mask_black_bg,
mask_far_points,
efficiency
],
outputs=[reconstruction_output, log_output, reconstruction_npy],
).then(
fn=lambda: "False", inputs=[], outputs=[is_example]
)
mask_black_bg.change(
update_visualization,
[target_dir_output, mask_black_bg, mask_far_points, is_example],
[reconstruction_output, log_output],
)
mask_far_points.change(
update_visualization,
[target_dir_output, mask_black_bg, mask_far_points, is_example],
[reconstruction_output, log_output],
)
input_image.change(
fn=update_gallery_on_upload,
inputs=[input_image],
outputs=[target_dir_output, log_output],
)
# Dynamically update intrinsic parameter visibility when camera selection changes.
camera_model.change(
fn=update_parameters,
inputs=camera_model,
outputs=[fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov],
)
demo.queue(max_size=20).launch(show_error=True, ssr_mode=False)
|