File size: 17,222 Bytes
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39aba6e
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39aba6e
 
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39aba6e
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""

import importlib
import warnings
from copy import deepcopy
from math import ceil

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.v2.functional as TF
from einops import rearrange
from huggingface_hub import PyTorchModelHubMixin

from unik3d.models.decoder import Decoder
from unik3d.utils.camera import BatchCamera, Camera
from unik3d.utils.constants import IMAGENET_DATASET_MEAN, IMAGENET_DATASET_STD
from unik3d.utils.distributed import is_main_process
from unik3d.utils.misc import get_params, last_stack, match_gt


def orthonormal_init(num_tokens, dims):
    pe = torch.randn(num_tokens, dims)
    # use Gram-Schmidt process to make the matrix orthonormal
    for i in range(num_tokens):
        for j in range(i):
            pe[i] -= torch.dot(pe[i], pe[j]) * pe[j]
        pe[i] = F.normalize(pe[i], p=2, dim=0)
    return pe


def get_paddings(original_shape, aspect_ratio_range):
    # Original dimensions
    H_ori, W_ori = original_shape
    orig_aspect_ratio = W_ori / H_ori

    # Determine the closest aspect ratio within the range
    min_ratio, max_ratio = aspect_ratio_range
    target_aspect_ratio = min(max_ratio, max(min_ratio, orig_aspect_ratio))

    if orig_aspect_ratio > target_aspect_ratio:  # Too wide
        W_new = W_ori
        H_new = int(W_ori / target_aspect_ratio)
        pad_top = (H_new - H_ori) // 2
        pad_bottom = H_new - H_ori - pad_top
        pad_left, pad_right = 0, 0
    else:  # Too tall
        H_new = H_ori
        W_new = int(H_ori * target_aspect_ratio)
        pad_left = (W_new - W_ori) // 2
        pad_right = W_new - W_ori - pad_left
        pad_top, pad_bottom = 0, 0

    return (pad_left, pad_right, pad_top, pad_bottom), (H_new, W_new)


def get_resize_factor(original_shape, pixels_range, shape_multiplier=14):
    # Original dimensions
    H_ori, W_ori = original_shape
    n_pixels_ori = W_ori * H_ori

    # Determine the closest number of pixels within the range
    min_pixels, max_pixels = pixels_range
    target_pixels = min(max_pixels, max(min_pixels, n_pixels_ori))

    # Calculate the resize factor
    resize_factor = (target_pixels / n_pixels_ori) ** 0.5
    new_width = int(W_ori * resize_factor)
    new_height = int(H_ori * resize_factor)
    new_height = ceil(new_height / shape_multiplier) * shape_multiplier
    new_width = ceil(new_width / shape_multiplier) * shape_multiplier

    return resize_factor, (new_height, new_width)


def _postprocess(tensor, shapes, paddings, interpolation_mode="bilinear"):

    # interpolate to original size
    tensor = F.interpolate(
        tensor, size=shapes, mode=interpolation_mode, align_corners=False
    )

    # remove paddings
    pad1_l, pad1_r, pad1_t, pad1_b = paddings
    tensor = tensor[..., pad1_t : shapes[0] - pad1_b, pad1_l : shapes[1] - pad1_r]
    return tensor


class UniK3D(
    nn.Module,
    PyTorchModelHubMixin,
    library_name="UniK3D",
    repo_url="https://github.com/lpiccinelli-eth/UniK3D",
    tags=["monocular-metric-3D-estimation"],
):
    def __init__(
        self,
        config,
        eps: float = 1e-6,
        **kwargs,
    ):
        super().__init__()
        self.eps = eps
        self.build(config)
        self.build_losses(config)

    def pack_sequence(
        self,
        inputs: dict[str, torch.Tensor],
    ):
        for key, value in inputs.items():
            if isinstance(value, torch.Tensor):
                inputs[key] = value.reshape(-1, *value.shape[2:])
            elif isinstance(value, BatchCamera):
                inputs[key] = value.reshape(-1)
        return inputs

    def unpack_sequence(self, inputs: dict[str, torch.Tensor], B: int, T: int):
        for key, value in inputs.items():
            if isinstance(value, torch.Tensor):
                inputs[key] = value.reshape(B, T, *value.shape[1:])
            elif isinstance(value, BatchCamera):
                inputs[key] = value.reshape(B, T)
        return inputs

    def forward_train(self, inputs, image_metas):
        losses = {"opt": {}, "stat": {}}
        B, T = inputs["image"].shape[:2]
        image_metas[0]["B"], image_metas[0]["T"] = B, T
        inputs = self.pack_sequence(inputs)  # move from  B, T, ... -> B*T, ...

        inputs, outputs = self.encode_decode(inputs, image_metas)
        validity_mask = inputs["validity_mask"]

        # be careful on possible NaNs in reconstruced 3D (unprojection out-of-bound)
        pts_gt = inputs["camera"].reconstruct(inputs["depth"]) * validity_mask.float()
        pts_gt = torch.where(pts_gt.isnan().any(dim=1, keepdim=True), 0.0, pts_gt)
        mask_pts_gt_nan = ~pts_gt.isnan().any(dim=1, keepdim=True)
        mask = (
            inputs["depth_mask"].bool() & validity_mask.bool() & mask_pts_gt_nan.bool()
        )

        # compute loss!
        inputs["distance"] = torch.norm(pts_gt, dim=1, keepdim=True)
        inputs["points"] = pts_gt
        inputs["depth_mask"] = mask
        losses = self.compute_losses(outputs, inputs, image_metas)

        outputs = self.unpack_sequence(outputs, B, T)
        return (
            outputs,
            losses,
        )

    def forward_test(self, inputs, image_metas):
        B, T = inputs["image"].shape[:2]
        image_metas[0]["B"], image_metas[0]["T"] = B, T
        # move from  B, T, ... -> B*T, ...
        inputs = self.pack_sequence(inputs)
        inputs, outputs = self.encode_decode(inputs, image_metas)

        # you can add a dummy tensor with the actual output shape
        depth_gt = inputs["depth"]

        outs = {}
        outs["points"] = match_gt(
            outputs["points"], depth_gt, padding1=inputs["paddings"], padding2=None
        )
        outs["confidence"] = match_gt(
            outputs["confidence"], depth_gt, padding1=inputs["paddings"], padding2=None
        )
        outs["distance"] = outs["points"].norm(dim=1, keepdim=True)
        outs["depth"] = outs["points"][:, -1:]
        outs["rays"] = outs["points"] / torch.norm(
            outs["points"], dim=1, keepdim=True
        ).clip(min=1e-5)

        outs = self.unpack_sequence(outs, B, T)
        return outs

    def forward(self, inputs, image_metas):
        if self.training:
            return self.forward_train(inputs, image_metas)
        else:
            return self.forward_test(inputs, image_metas)

    def encode_decode(self, inputs, image_metas=[]):
        B, _, H, W = inputs["image"].shape

        # shortcut eval should avoid errors
        if len(image_metas) and "paddings" in image_metas[0]:
            # lrtb
            inputs["paddings"] = torch.tensor(
                [image_meta["paddings"] for image_meta in image_metas],
                device=self.device,
            )[..., [0, 2, 1, 3]]
            inputs["depth_paddings"] = torch.tensor(
                [image_meta["depth_paddings"] for image_meta in image_metas],
                device=self.device,
            )
            # at inference we do not have image paddings on top of depth ones (we have not "crop" on gt in ContextCrop)
            if self.training:
                inputs["depth_paddings"] = inputs["depth_paddings"] + inputs["paddings"]
            else:
                inputs["paddings"] = inputs["paddings"].squeeze(0)
                inputs["depth_paddings"] = inputs["depth_paddings"].squeeze(0)

        if inputs.get("camera", None) is not None:
            inputs["rays"] = inputs["camera"].get_rays(shapes=(B, H, W))

        features, tokens = self.pixel_encoder(inputs["image"])
        inputs["features"] = [
            self.stacking_fn(features[i:j]).contiguous()
            for i, j in self.slices_encoder_range
        ]
        inputs["tokens"] = [
            self.stacking_fn(tokens[i:j]).contiguous()
            for i, j in self.slices_encoder_range
        ]

        outputs = self.pixel_decoder(inputs, image_metas)
        outputs["rays"] = rearrange(outputs["rays"], "b (h w) c -> b c h w", h=H, w=W)
        pts_3d = outputs["rays"] * outputs["distance"]
        outputs.update({"points": pts_3d, "depth": pts_3d[:, -1:]})

        return inputs, outputs

    def compute_losses(self, outputs, inputs, image_metas):
        B, _, H, W = inputs["image"].shape
        losses = {"opt": {}, "stat": {}}
        losses_to_be_computed = list(self.losses.keys())

        # depth loss
        si = torch.tensor(
            [x.get("si", False) for x in image_metas], device=self.device
        ).reshape(B)
        loss = self.losses["depth"]
        depth_losses = loss(
            outputs["distance"],
            target=inputs["distance"],
            mask=inputs["depth_mask"].clone(),
            si=si,
        )
        losses["opt"][loss.name] = loss.weight * depth_losses.mean()
        losses_to_be_computed.remove("depth")

        loss = self.losses["camera"]
        camera_losses = loss(
            outputs["rays"], target=inputs["rays"], mask=inputs["validity_mask"].bool()
        )
        losses["opt"][loss.name] = loss.weight * camera_losses.mean()
        losses_to_be_computed.remove("camera")

        # remaining losses, we expect no more losses to be computed
        loss = self.losses["confidence"]
        conf_losses = loss(
            outputs["confidence"],
            target_gt=inputs["depth"],
            target_pred=outputs["depth"],
            mask=inputs["depth_mask"].clone(),
        )
        print(conf_losses, camera_losses, depth_losses)
        losses["opt"][loss.name + "_conf"] = loss.weight * conf_losses.mean()
        losses_to_be_computed.remove("confidence")

        assert (
            not losses_to_be_computed
        ), f"Losses {losses_to_be_computed} not computed, revise `compute_loss` method"

        return losses

    @torch.no_grad()
    def infer(
        self,
        rgb: torch.Tensor,
        camera: torch.Tensor | Camera | None = None,
        rays=None,
        normalize=True,
    ):
        ratio_bounds = self.shape_constraints["ratio_bounds"]
        pixels_bounds = [
            self.shape_constraints["pixels_min"],
            self.shape_constraints["pixels_max"],
        ]
        if hasattr(self, "resolution_level"):
            assert (
                self.resolution_level >= 0 and self.resolution_level < 10
            ), "resolution_level should be in [0, 10)"
            pixels_range = pixels_bounds[1] - pixels_bounds[0]
            interval = pixels_range / 10
            new_lowbound = self.resolution_level * interval + pixels_bounds[0]
            new_upbound = (self.resolution_level + 1) * interval + pixels_bounds[0]
            pixels_bounds = (new_lowbound, new_upbound)
        else:
            warnings.warn("!! self.resolution_level not set, using default bounds !!")

        # houskeeping on cpu/cuda and batchify
        if rgb.ndim == 3:
            rgb = rgb.unsqueeze(0)
        if camera is not None:
            camera = BatchCamera.from_camera(camera)
            camera = camera.to(self.device)

        B, _, H, W = rgb.shape
        rgb = rgb.to(self.device)

        # preprocess
        paddings, (padded_H, padded_W) = get_paddings((H, W), ratio_bounds)
        (pad_left, pad_right, pad_top, pad_bottom) = paddings
        resize_factor, (new_H, new_W) = get_resize_factor(
            (padded_H, padded_W), pixels_bounds
        )
        # -> rgb preprocess (input std-ized and resized)
        if normalize:
            rgb = TF.normalize(
                rgb.float() / 255.0,
                mean=IMAGENET_DATASET_MEAN,
                std=IMAGENET_DATASET_STD,
            )
        rgb = F.pad(rgb, (pad_left, pad_right, pad_top, pad_bottom), value=0.0)
        rgb = F.interpolate(
            rgb, size=(new_H, new_W), mode="bilinear", align_corners=False
        )
        # -> camera preprocess
        if camera is not None:
            camera = camera.crop(
                left=-pad_left, top=-pad_top, right=-pad_right, bottom=-pad_bottom
            )
            camera = camera.resize(resize_factor)

        # prepare inputs
        inputs = {"image": rgb}
        if camera is not None:
            inputs["camera"] = camera
            rays = camera.get_rays(shapes=(B, new_H, new_W), noisy=False).reshape(
                B, 3, new_H, new_W
            )
            inputs["rays"] = rays

        if rays is not None:
            rays = rays.to(self.device)
            if rays.ndim == 3:
                rays = rays.unsqueeze(0)
            rays = F.pad(
                rays,
                (
                    max(0, pad_left),
                    max(0, pad_right),
                    max(0, pad_top),
                    max(0, pad_bottom),
                ),
                value=0.0,
            )
            rays = F.interpolate(
                rays, size=(new_H, new_W), mode="bilinear", align_corners=False
            )
            inputs["rays"] = rays

        # run model
        _, model_outputs = self.encode_decode(inputs, image_metas={})

        # collect outputs
        out = {}
        out["confidence"] = _postprocess(
            model_outputs["confidence"],
            (padded_H, padded_W),
            paddings=paddings,
            interpolation_mode=self.interpolation_mode,
        )
        points = _postprocess(
            model_outputs["points"],
            (padded_H, padded_W),
            paddings=paddings,
            interpolation_mode=self.interpolation_mode,
        )
        rays = _postprocess(
            model_outputs["rays"],
            (padded_H, padded_W),
            paddings=paddings,
            interpolation_mode=self.interpolation_mode,
        )

        out["distance"] = points.norm(dim=1, keepdim=True)
        out["depth"] = points[:, -1:]
        out["points"] = points
        out["rays"] = rays / torch.norm(rays, dim=1, keepdim=True).clip(min=1e-5)
        out["lowres_features"] = model_outputs["lowres_features"]
        return out

    def load_pretrained(self, model_file):
        dict_model = torch.load(model_file, map_location="cpu", weights_only=False)
        if "model" in dict_model:
            dict_model = dict_model["model"]
        info = self.load_state_dict(dict_model, strict=False)
        if is_main_process():
            print(
                f"Loaded from {model_file} for {self.__class__.__name__} results in:",
                info,
            )

    def build(self, config):
        mod = importlib.import_module("unik3d.models.encoder")
        pixel_encoder_factory = getattr(mod, config["model"]["pixel_encoder"]["name"])
        pixel_encoder_config = {
            **config["training"],
            **config["model"]["pixel_encoder"],
            **config["data"],
        }
        pixel_encoder = pixel_encoder_factory(pixel_encoder_config)
        pixel_encoder_embed_dims = (
            pixel_encoder.embed_dims
            if hasattr(pixel_encoder, "embed_dims")
            else [getattr(pixel_encoder, "embed_dim") * 2**i for i in range(4)]
        )
        config["model"]["pixel_encoder"]["embed_dim"] = getattr(
            pixel_encoder, "embed_dim"
        )
        config["model"]["pixel_encoder"]["embed_dims"] = pixel_encoder_embed_dims
        config["model"]["pixel_encoder"]["depths"] = pixel_encoder.depths
        config["model"]["pixel_encoder"]["cls_token_embed_dims"] = getattr(
            pixel_encoder, "cls_token_embed_dims", pixel_encoder_embed_dims
        )

        pixel_decoder = Decoder(config)

        self.pixel_encoder = pixel_encoder
        self.pixel_decoder = pixel_decoder
        self.slices_encoder_range = list(
            zip([0, *self.pixel_encoder.depths[:-1]], self.pixel_encoder.depths)
        )
        self.stacking_fn = last_stack
        self.shape_constraints = config["data"]["shape_constraints"]
        self.interpolation_mode = "bilinear"

    def build_losses(self, config):
        self.losses = {}
        for loss_name, loss_config in config["training"]["losses"].items():
            mod = importlib.import_module("unik3d.ops.losses")
            loss_factory = getattr(mod, loss_config["name"])
            self.losses[loss_name] = loss_factory.build(loss_config)

    def get_params(self, config):
        if hasattr(self.pixel_encoder, "get_params"):
            encoder_p, _ = self.pixel_encoder.get_params(
                config["model"]["pixel_encoder"]["lr"],
                config["training"]["wd"],
                config["training"]["ld"],
            )
        else:
            encoder_p, _ = get_params(
                self.pixel_encoder,
                config["model"]["pixel_encoder"]["lr"],
                config["training"]["wd"],
            )
        decoder_p = self.pixel_decoder.get_params(
            config["training"]["lr"], config["training"]["wd"]
        )
        return [*encoder_p, *decoder_p]

    def step(self):
        self.pixel_decoder.steps += 1

    def parameters_grad(self):
        for p in self.parameters():
            if p.requires_grad:
                yield p

    @property
    def device(self):
        return next(self.parameters()).device