Spaces:
Running
on
Zero
Running
on
Zero
from functools import wraps | |
from time import time | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, reduce, repeat | |
from scipy import interpolate | |
def max_stack(tensors: list[torch.Tensor]) -> torch.Tensor: | |
if len(tensors) == 1: | |
return tensors[0] | |
return torch.stack(tensors, dim=-1).max(dim=-1).values | |
def last_stack(tensors: list[torch.Tensor]) -> torch.Tensor: | |
return tensors[-1] | |
def first_stack(tensors: list[torch.Tensor]) -> torch.Tensor: | |
return tensors[0] | |
def softmax_stack( | |
tensors: list[torch.Tensor], temperature: float = 1.0 | |
) -> torch.Tensor: | |
if len(tensors) == 1: | |
return tensors[0] | |
return F.softmax(torch.stack(tensors, dim=-1) / temperature, dim=-1).sum(dim=-1) | |
def mean_stack(tensors: list[torch.Tensor]) -> torch.Tensor: | |
if len(tensors) == 1: | |
return tensors[0] | |
return torch.stack(tensors, dim=-1).mean(dim=-1) | |
def sum_stack(tensors: list[torch.Tensor]) -> torch.Tensor: | |
if len(tensors) == 1: | |
return tensors[0] | |
return torch.stack(tensors, dim=-1).sum(dim=-1) | |
def convert_module_to_f16(l): | |
""" | |
Convert primitive modules to float16. | |
""" | |
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): | |
l.weight.data = l.weight.data.half() | |
if l.bias is not None: | |
l.bias.data = l.bias.data.half() | |
def convert_module_to_f32(l): | |
""" | |
Convert primitive modules to float32, undoing convert_module_to_f16(). | |
""" | |
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): | |
l.weight.data = l.weight.data.float() | |
if l.bias is not None: | |
l.bias.data = l.bias.data.float() | |
def format_seconds(seconds): | |
minutes, seconds = divmod(seconds, 60) | |
hours, minutes = divmod(minutes, 60) | |
return f"{hours:d}:{minutes:02d}:{seconds:02d}" | |
def get_params(module, lr, wd): | |
skip_list = {} | |
skip_keywords = {} | |
if hasattr(module, "no_weight_decay"): | |
skip_list = module.no_weight_decay() | |
if hasattr(module, "no_weight_decay_keywords"): | |
skip_keywords = module.no_weight_decay_keywords() | |
has_decay = [] | |
no_decay = [] | |
for name, param in module.named_parameters(): | |
if not param.requires_grad: | |
continue # frozen weights | |
if ( | |
(name in skip_list) | |
or any((kw in name for kw in skip_keywords)) | |
or len(param.shape) == 1 | |
or name.endswith(".gamma") | |
or name.endswith(".beta") | |
or name.endswith(".bias") | |
): | |
no_decay.append(param) | |
else: | |
has_decay.append(param) | |
group1 = { | |
"params": has_decay, | |
"weight_decay": wd, | |
"lr": lr, | |
"weight_decay_init": wd, | |
"weight_decay_base": wd, | |
"lr_base": lr, | |
} | |
group2 = { | |
"params": no_decay, | |
"weight_decay": 0.0, | |
"lr": lr, | |
"weight_decay_init": 0.0, | |
"weight_decay_base": 0.0, | |
"weight_decay_final": 0.0, | |
"lr_base": lr, | |
} | |
return [group1, group2], [lr, lr] | |
def get_num_layer_for_swin(var_name, num_max_layer, layers_per_stage): | |
if var_name in ("cls_token", "mask_token", "pos_embed", "absolute_pos_embed"): | |
return 0 | |
elif var_name.startswith("patch_embed"): | |
return 0 | |
elif var_name.startswith("layers"): | |
if var_name.split(".")[2] == "blocks": | |
stage_id = int(var_name.split(".")[1]) | |
layer_id = int(var_name.split(".")[3]) + sum(layers_per_stage[:stage_id]) | |
return layer_id + 1 | |
elif var_name.split(".")[2] == "downsample": | |
stage_id = int(var_name.split(".")[1]) | |
layer_id = sum(layers_per_stage[: stage_id + 1]) | |
return layer_id | |
else: | |
return num_max_layer - 1 | |
def get_params_layerdecayswin(module, lr, wd, ld): | |
skip_list = {} | |
skip_keywords = {} | |
if hasattr(module, "no_weight_decay"): | |
skip_list = module.no_weight_decay() | |
if hasattr(module, "no_weight_decay_keywords"): | |
skip_keywords = module.no_weight_decay_keywords() | |
layers_per_stage = module.depths | |
num_layers = sum(layers_per_stage) + 1 | |
lrs = [] | |
params = [] | |
for name, param in module.named_parameters(): | |
if not param.requires_grad: | |
print(f"{name} frozen") | |
continue # frozen weights | |
layer_id = get_num_layer_for_swin(name, num_layers, layers_per_stage) | |
lr_cur = lr * ld ** (num_layers - layer_id - 1) | |
# if (name in skip_list) or any((kw in name for kw in skip_keywords)) or len(param.shape) == 1 or name.endswith(".bias"): | |
if (name in skip_list) or any((kw in name for kw in skip_keywords)): | |
wd_cur = 0.0 | |
else: | |
wd_cur = wd | |
params.append({"params": param, "weight_decay": wd_cur, "lr": lr_cur}) | |
lrs.append(lr_cur) | |
return params, lrs | |
def log(t, eps: float = 1e-5): | |
return torch.log(t.clamp(min=eps)) | |
def l2norm(t): | |
return F.normalize(t, dim=-1) | |
def exists(val): | |
return val is not None | |
def identity(t, *args, **kwargs): | |
return t | |
def divisible_by(numer, denom): | |
return (numer % denom) == 0 | |
def first(arr, d=None): | |
if len(arr) == 0: | |
return d | |
return arr[0] | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if callable(d) else d | |
def maybe(fn): | |
def inner(x): | |
if not exists(x): | |
return x | |
return fn(x) | |
return inner | |
def once(fn): | |
called = False | |
def inner(x): | |
nonlocal called | |
if called: | |
return | |
called = True | |
return fn(x) | |
return inner | |
def _many(fn): | |
def inner(tensors, pattern, **kwargs): | |
return (fn(tensor, pattern, **kwargs) for tensor in tensors) | |
return inner | |
rearrange_many = _many(rearrange) | |
repeat_many = _many(repeat) | |
reduce_many = _many(reduce) | |
def load_pretrained(state_dict, checkpoint): | |
checkpoint_model = checkpoint["model"] | |
if any([True if "encoder." in k else False for k in checkpoint_model.keys()]): | |
checkpoint_model = { | |
k.replace("encoder.", ""): v | |
for k, v in checkpoint_model.items() | |
if k.startswith("encoder.") | |
} | |
print("Detect pre-trained model, remove [encoder.] prefix.") | |
else: | |
print("Detect non-pre-trained model, pass without doing anything.") | |
print(f">>>>>>>>>> Remapping pre-trained keys for SWIN ..........") | |
checkpoint = load_checkpoint_swin(state_dict, checkpoint_model) | |
def load_checkpoint_swin(model, checkpoint_model): | |
state_dict = model.state_dict() | |
# Geometric interpolation when pre-trained patch size mismatch with fine-tuned patch size | |
all_keys = list(checkpoint_model.keys()) | |
for key in all_keys: | |
if "relative_position_bias_table" in key: | |
relative_position_bias_table_pretrained = checkpoint_model[key] | |
relative_position_bias_table_current = state_dict[key] | |
L1, nH1 = relative_position_bias_table_pretrained.size() | |
L2, nH2 = relative_position_bias_table_current.size() | |
if nH1 != nH2: | |
print(f"Error in loading {key}, passing......") | |
else: | |
if L1 != L2: | |
print(f"{key}: Interpolate relative_position_bias_table using geo.") | |
src_size = int(L1**0.5) | |
dst_size = int(L2**0.5) | |
def geometric_progression(a, r, n): | |
return a * (1.0 - r**n) / (1.0 - r) | |
left, right = 1.01, 1.5 | |
while right - left > 1e-6: | |
q = (left + right) / 2.0 | |
gp = geometric_progression(1, q, src_size // 2) | |
if gp > dst_size // 2: | |
right = q | |
else: | |
left = q | |
# if q > 1.090307: | |
# q = 1.090307 | |
dis = [] | |
cur = 1 | |
for i in range(src_size // 2): | |
dis.append(cur) | |
cur += q ** (i + 1) | |
r_ids = [-_ for _ in reversed(dis)] | |
x = r_ids + [0] + dis | |
y = r_ids + [0] + dis | |
t = dst_size // 2.0 | |
dx = np.arange(-t, t + 0.1, 1.0) | |
dy = np.arange(-t, t + 0.1, 1.0) | |
print("Original positions = %s" % str(x)) | |
print("Target positions = %s" % str(dx)) | |
all_rel_pos_bias = [] | |
for i in range(nH1): | |
z = ( | |
relative_position_bias_table_pretrained[:, i] | |
.view(src_size, src_size) | |
.float() | |
.numpy() | |
) | |
f_cubic = interpolate.interp2d(x, y, z, kind="cubic") | |
all_rel_pos_bias.append( | |
torch.Tensor(f_cubic(dx, dy)) | |
.contiguous() | |
.view(-1, 1) | |
.to(relative_position_bias_table_pretrained.device) | |
) | |
new_rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) | |
checkpoint_model[key] = new_rel_pos_bias | |
# delete relative_position_index since we always re-init it | |
relative_position_index_keys = [ | |
k for k in checkpoint_model.keys() if "relative_position_index" in k | |
] | |
for k in relative_position_index_keys: | |
del checkpoint_model[k] | |
# delete relative_coords_table since we always re-init it | |
relative_coords_table_keys = [ | |
k for k in checkpoint_model.keys() if "relative_coords_table" in k | |
] | |
for k in relative_coords_table_keys: | |
del checkpoint_model[k] | |
# # re-map keys due to name change | |
rpe_mlp_keys = [k for k in checkpoint_model.keys() if "cpb_mlp" in k] | |
for k in rpe_mlp_keys: | |
checkpoint_model[k.replace("cpb_mlp", "rpe_mlp")] = checkpoint_model.pop(k) | |
# delete attn_mask since we always re-init it | |
attn_mask_keys = [k for k in checkpoint_model.keys() if "attn_mask" in k] | |
for k in attn_mask_keys: | |
del checkpoint_model[k] | |
encoder_keys = [k for k in checkpoint_model.keys() if k.startswith("encoder.")] | |
for k in encoder_keys: | |
checkpoint_model[k.replace("encoder.", "")] = checkpoint_model.pop(k) | |
return checkpoint_model | |
def add_padding_metas(out, image_metas): | |
device = out.device | |
# left, right, top, bottom | |
paddings = [img_meta.get("paddings", [0] * 4) for img_meta in image_metas] | |
paddings = torch.stack(paddings).to(device) | |
outs = [F.pad(o, padding, value=0.0) for padding, o in zip(paddings, out)] | |
return torch.stack(outs) | |
# left, right, top, bottom | |
def remove_padding(out, paddings): | |
H, W = out.shape[-2:] | |
outs = [ | |
o[..., padding[2] : H - padding[3], padding[0] : W - padding[1]] | |
for padding, o in zip(paddings, out) | |
] | |
return torch.stack(outs) | |
def remove_padding_metas(out, image_metas): | |
B, C, H, W = out.shape | |
device = out.device | |
# left, right, top, bottom | |
paddings = [ | |
torch.tensor(img_meta.get("paddings", [0] * 4)) for img_meta in image_metas | |
] | |
return remove_padding(out, paddings) | |
def ssi_helper(tensor1, tensor2): | |
stability_mat = 1e-4 * torch.eye(2, device=tensor1.device) | |
tensor2_one = torch.stack([tensor2, torch.ones_like(tensor2)], dim=1) | |
scale_shift = torch.inverse(tensor2_one.T @ tensor2_one + stability_mat) @ ( | |
tensor2_one.T @ tensor1.unsqueeze(1) | |
) | |
scale, shift = scale_shift.squeeze().chunk(2, dim=0) | |
return scale, shift | |
def calculate_mean_values(names, values): | |
# Create a defaultdict to store sum and count for each name | |
name_values = {name: {} for name in names} | |
# Iterate through the lists and accumulate values for each name | |
for name, value in zip(names, values): | |
name_values[name]["sum"] = name_values[name].get("sum", 0.0) + value | |
name_values[name]["count"] = name_values[name].get("count", 0.0) + 1 | |
# Calculate mean values and create the output dictionary | |
output_dict = { | |
name: name_values[name]["sum"] / name_values[name]["count"] | |
for name in name_values | |
} | |
return output_dict | |
def remove_leading_dim(infos): | |
if isinstance(infos, dict): | |
return {k: remove_leading_dim(v) for k, v in infos.items()} | |
elif isinstance(infos, torch.Tensor): | |
return infos.squeeze(0) | |
else: | |
return infos | |
def recursive_index(infos, index): | |
if isinstance(infos, dict): | |
return {k: recursive_index(v, index) for k, v in infos.items()} | |
elif isinstance(infos, torch.Tensor): | |
return infos[index] | |
else: | |
return infos | |
def to_cpu(infos): | |
if isinstance(infos, dict): | |
return {k: to_cpu(v) for k, v in infos.items()} | |
elif isinstance(infos, torch.Tensor): | |
return infos.detach() | |
else: | |
return infos | |
def masked_mean( | |
data: torch.Tensor, | |
mask: torch.Tensor | None = None, | |
dim: list[int] | None = None, | |
keepdim: bool = False, | |
) -> torch.Tensor: | |
dim = dim if dim is not None else list(range(data.dim())) | |
if mask is None: | |
return data.mean(dim=dim, keepdim=keepdim) | |
mask = mask.float() | |
mask_sum = torch.sum(mask, dim=dim, keepdim=True) | |
mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp( | |
mask_sum, min=1.0 | |
) | |
return mask_mean.squeeze(dim) if not keepdim else mask_mean | |
class ProfileMethod: | |
def __init__(self, model, func_name, track_statistics=True, verbose=False): | |
self.model = model | |
self.func_name = func_name | |
self.verbose = verbose | |
self.track_statistics = track_statistics | |
self.timings = [] | |
def __enter__(self): | |
# Start timing | |
if self.verbose: | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
self.start_time = time() | |
return self | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
if self.verbose: | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
self.end_time = time() | |
elapsed_time = self.end_time - self.start_time | |
self.timings.append(elapsed_time) | |
if self.track_statistics and len(self.timings) > 25: | |
# Compute statistics if tracking | |
timings_array = np.array(self.timings) | |
mean_time = np.mean(timings_array) | |
std_time = np.std(timings_array) | |
quantiles = np.percentile(timings_array, [0, 25, 50, 75, 100]) | |
print( | |
f"{self.model.__class__.__name__}.{self.func_name} took {elapsed_time:.4f} seconds" | |
) | |
print(f"Mean Time: {mean_time:.4f} seconds") | |
print(f"Std Time: {std_time:.4f} seconds") | |
print( | |
f"Quantiles: Min={quantiles[0]:.4f}, 25%={quantiles[1]:.4f}, Median={quantiles[2]:.4f}, 75%={quantiles[3]:.4f}, Max={quantiles[4]:.4f}" | |
) | |
else: | |
print( | |
f"{self.model.__class__.__name__}.{self.func_name} took {elapsed_time:.4f} seconds" | |
) | |
def profile_method(track_statistics=True, verbose=False): | |
def decorator(func): | |
def wrapper(self, *args, **kwargs): | |
with ProfileMethod(self, func.__name__, track_statistics, verbose): | |
return func(self, *args, **kwargs) | |
return wrapper | |
return decorator | |
class ProfileFunction: | |
def __init__(self, func_name, track_statistics=True, verbose=False): | |
self.func_name = func_name | |
self.verbose = verbose | |
self.track_statistics = track_statistics | |
self.timings = [] | |
def __enter__(self): | |
# Start timing | |
if self.verbose: | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
self.start_time = time() | |
return self | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
if self.verbose: | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
self.end_time = time() | |
elapsed_time = self.end_time - self.start_time | |
self.timings.append(elapsed_time) | |
if self.track_statistics and len(self.timings) > 25: | |
# Compute statistics if tracking | |
timings_array = np.array(self.timings) | |
mean_time = np.mean(timings_array) | |
std_time = np.std(timings_array) | |
quantiles = np.percentile(timings_array, [0, 25, 50, 75, 100]) | |
print(f"{self.func_name} took {elapsed_time:.4f} seconds") | |
print(f"Mean Time: {mean_time:.4f} seconds") | |
print(f"Std Time: {std_time:.4f} seconds") | |
print( | |
f"Quantiles: Min={quantiles[0]:.4f}, 25%={quantiles[1]:.4f}, Median={quantiles[2]:.4f}, 75%={quantiles[3]:.4f}, Max={quantiles[4]:.4f}" | |
) | |
else: | |
print(f"{self.func_name} took {elapsed_time:.4f} seconds") | |
def profile_function(track_statistics=True, verbose=False): | |
def decorator(func): | |
def wrapper(self, *args, **kwargs): | |
with ProfileFunction(func.__name__, track_statistics, verbose): | |
return func(self, *args, **kwargs) | |
return wrapper | |
return decorator | |
def recursive_apply(inputs, func): | |
if isinstance(inputs, list): | |
return [recursive_apply(camera, func) for camera in inputs] | |
else: | |
return func(inputs) | |
def squeeze_list(nested_list, dim, current_dim=0): | |
# If the current dimension is in the list of indices to squeeze | |
if isinstance(nested_list, list) and len(nested_list) == 1 and current_dim == dim: | |
return squeeze_list(nested_list[0], dim, current_dim + 1) | |
elif isinstance(nested_list, list): | |
return [squeeze_list(item, dim, current_dim + 1) for item in nested_list] | |
else: | |
return nested_list | |
def match_gt(tensor1, tensor2, padding1, padding2, mode: str = "bilinear"): | |
""" | |
Transform each item in tensor1 batch to match tensor2's dimensions and padding. | |
Args: | |
tensor1 (torch.Tensor): The input tensor to transform, with shape (batch_size, channels, height, width). | |
tensor2 (torch.Tensor): The target tensor to match, with shape (batch_size, channels, height, width). | |
padding1 (tuple): Padding applied to tensor1 (pad_left, pad_right, pad_top, pad_bottom). | |
padding2 (tuple): Desired padding to be applied to match tensor2 (pad_left, pad_right, pad_top, pad_bottom). | |
Returns: | |
torch.Tensor: The batch of transformed tensors matching tensor2's size and padding. | |
""" | |
# Get batch size | |
batch_size = len(tensor1) | |
src_dtype = tensor1[0].dtype | |
tgt_dtype = tensor2[0].dtype | |
# List to store transformed tensors | |
transformed_tensors = [] | |
for i in range(batch_size): | |
item1 = tensor1[i] | |
item2 = tensor2[i] | |
h1, w1 = item1.shape[1], item1.shape[2] | |
pad1_l, pad1_r, pad1_t, pad1_b = ( | |
padding1[i] if padding1 is not None else (0, 0, 0, 0) | |
) | |
pad2_l, pad2_r, pad2_t, pad2_b = ( | |
padding2[i] if padding2 is not None else (0, 0, 0, 0) | |
) | |
item1_unpadded = item1[:, pad1_t : h1 - pad1_b, pad1_l : w1 - pad1_r] | |
h2, w2 = ( | |
item2.shape[1] - pad2_t - pad2_b, | |
item2.shape[2] - pad2_l - pad2_r, | |
) | |
item1_resized = F.interpolate( | |
item1_unpadded.unsqueeze(0).to(tgt_dtype), size=(h2, w2), mode=mode | |
) | |
item1_padded = F.pad(item1_resized, (pad2_l, pad2_r, pad2_t, pad2_b)) | |
transformed_tensors.append(item1_padded) | |
transformed_batch = torch.cat(transformed_tensors) | |
return transformed_batch.to(src_dtype) | |