larkkin's picture
Add application code and models, update README
8044721
# coding: utf8
from collections import Counter, OrderedDict
from itertools import chain
import six
import torch
from .pipeline import Pipeline
from .utils import get_tokenizer, dtype_to_attr, is_tokenizer_serializable
from .vocab import Vocab
class RawField(object):
""" Defines a general datatype.
Every dataset consists of one or more types of data. For instance, a text
classification dataset contains sentences and their classes, while a
machine translation dataset contains paired examples of text in two
languages. Each of these types of data is represented by a RawField object.
A RawField object does not assume any property of the data type and
it holds parameters relating to how a datatype should be processed.
Attributes:
preprocessing: The Pipeline that will be applied to examples
using this field before creating an example.
Default: None.
postprocessing: A Pipeline that will be applied to a list of examples
using this field before assigning to a batch.
Function signature: (batch(list)) -> object
Default: None.
is_target: Whether this field is a target variable.
Affects iteration over batches. Default: False
"""
def __init__(self, preprocessing=None, postprocessing=None, is_target=False):
self.preprocessing = preprocessing
self.postprocessing = postprocessing
self.is_target = is_target
def preprocess(self, x):
""" Preprocess an example if the `preprocessing` Pipeline is provided. """
if hasattr(self, "preprocessing") and self.preprocessing is not None:
return self.preprocessing(x)
else:
return x
def process(self, batch, *args, **kwargs):
""" Process a list of examples to create a batch.
Postprocess the batch with user-provided Pipeline.
Args:
batch (list(object)): A list of object from a batch of examples.
Returns:
object: Processed object given the input and custom
postprocessing Pipeline.
"""
if self.postprocessing is not None:
batch = self.postprocessing(batch)
return batch
class Field(RawField):
"""Defines a datatype together with instructions for converting to Tensor.
Field class models common text processing datatypes that can be represented
by tensors. It holds a Vocab object that defines the set of possible values
for elements of the field and their corresponding numerical representations.
The Field object also holds other parameters relating to how a datatype
should be numericalized, such as a tokenization method and the kind of
Tensor that should be produced.
If a Field is shared between two columns in a dataset (e.g., question and
answer in a QA dataset), then they will have a shared vocabulary.
Attributes:
sequential: Whether the datatype represents sequential data. If False,
no tokenization is applied. Default: True.
use_vocab: Whether to use a Vocab object. If False, the data in this
field should already be numerical. Default: True.
init_token: A token that will be prepended to every example using this
field, or None for no initial token. Default: None.
eos_token: A token that will be appended to every example using this
field, or None for no end-of-sentence token. Default: None.
fix_length: A fixed length that all examples using this field will be
padded to, or None for flexible sequence lengths. Default: None.
dtype: The torch.dtype class that represents a batch of examples
of this kind of data. Default: torch.long.
preprocessing: The Pipeline that will be applied to examples
using this field after tokenizing but before numericalizing. Many
Datasets replace this attribute with a custom preprocessor.
Default: None.
postprocessing: A Pipeline that will be applied to examples using
this field after numericalizing but before the numbers are turned
into a Tensor. The pipeline function takes the batch as a list, and
the field's Vocab.
Default: None.
lower: Whether to lowercase the text in this field. Default: False.
tokenize: The function used to tokenize strings using this field into
sequential examples. If "spacy", the SpaCy tokenizer is
used. If a non-serializable function is passed as an argument,
the field will not be able to be serialized. Default: string.split.
tokenizer_language: The language of the tokenizer to be constructed.
Various languages currently supported only in SpaCy.
include_lengths: Whether to return a tuple of a padded minibatch and
a list containing the lengths of each examples, or just a padded
minibatch. Default: False.
batch_first: Whether to produce tensors with the batch dimension first.
Default: False.
pad_token: The string token used as padding. Default: "<pad>".
unk_token: The string token used to represent OOV words. Default: "<unk>".
pad_first: Do the padding of the sequence at the beginning. Default: False.
truncate_first: Do the truncating of the sequence at the beginning. Default: False
stop_words: Tokens to discard during the preprocessing step. Default: None
is_target: Whether this field is a target variable.
Affects iteration over batches. Default: False
"""
vocab_cls = Vocab
# Dictionary mapping PyTorch tensor dtypes to the appropriate Python
# numeric type.
dtypes = {
torch.float32: float,
torch.float: float,
torch.float64: float,
torch.double: float,
torch.float16: float,
torch.half: float,
torch.uint8: int,
torch.int8: int,
torch.int16: int,
torch.short: int,
torch.int32: int,
torch.int: int,
torch.int64: int,
torch.long: int,
}
ignore = ['dtype', 'tokenize']
def __init__(self, sequential=True, use_vocab=True, init_token=None,
eos_token=None, fix_length=None, dtype=torch.long,
preprocessing=None, postprocessing=None, lower=False,
tokenize=None, tokenizer_language='en', include_lengths=False,
batch_first=False, pad_token="<pad>", unk_token="<unk>",
pad_first=False, truncate_first=False, stop_words=None,
is_target=False):
self.sequential = sequential
self.use_vocab = use_vocab
self.init_token = init_token
self.eos_token = eos_token
self.unk_token = unk_token
self.fix_length = fix_length
self.dtype = dtype
self.preprocessing = preprocessing
self.postprocessing = postprocessing
self.lower = lower
# store params to construct tokenizer for serialization
# in case the tokenizer isn't picklable (e.g. spacy)
self.tokenizer_args = (tokenize, tokenizer_language)
self.tokenize = get_tokenizer(tokenize, tokenizer_language)
self.include_lengths = include_lengths
self.batch_first = batch_first
self.pad_token = pad_token if self.sequential else None
self.pad_first = pad_first
self.truncate_first = truncate_first
try:
self.stop_words = set(stop_words) if stop_words is not None else None
except TypeError:
raise ValueError("Stop words must be convertible to a set")
self.is_target = is_target
def __getstate__(self):
str_type = dtype_to_attr(self.dtype)
if is_tokenizer_serializable(*self.tokenizer_args):
tokenize = self.tokenize
else:
# signal to restore in `__setstate__`
tokenize = None
attrs = {k: v for k, v in self.__dict__.items() if k not in self.ignore}
attrs['dtype'] = str_type
attrs['tokenize'] = tokenize
return attrs
def __setstate__(self, state):
state['dtype'] = getattr(torch, state['dtype'])
if not state['tokenize']:
state['tokenize'] = get_tokenizer(*state['tokenizer_args'])
self.__dict__.update(state)
def __hash__(self):
# we don't expect this to be called often
return 42
def __eq__(self, other):
if not isinstance(other, RawField):
return False
return self.__dict__ == other.__dict__
def preprocess(self, x):
"""Load a single example using this field, tokenizing if necessary.
If the input is a Python 2 `str`, it will be converted to Unicode
first. If `sequential=True`, it will be tokenized. Then the input
will be optionally lowercased and passed to the user-provided
`preprocessing` Pipeline."""
if (six.PY2 and isinstance(x, six.string_types)
and not isinstance(x, six.text_type)):
x = Pipeline(lambda s: six.text_type(s, encoding='utf-8'))(x)
if self.sequential and isinstance(x, six.text_type):
x = self.tokenize(x.rstrip('\n'))
if self.lower:
x = Pipeline(six.text_type.lower)(x)
if self.sequential and self.use_vocab and self.stop_words is not None:
x = [w for w in x if w not in self.stop_words]
if hasattr(self, "preprocessing") and self.preprocessing is not None:
return self.preprocessing(x)
else:
return x
def process(self, batch, device=None):
""" Process a list of examples to create a torch.Tensor.
Pad, numericalize, and postprocess a batch and create a tensor.
Args:
batch (list(object)): A list of object from a batch of examples.
Returns:
torch.autograd.Variable: Processed object given the input
and custom postprocessing Pipeline.
"""
padded = self.pad(batch)
tensor = self.numericalize(padded, device=device)
return tensor
def pad(self, minibatch):
"""Pad a batch of examples using this field.
Pads to self.fix_length if provided, otherwise pads to the length of
the longest example in the batch. Prepends self.init_token and appends
self.eos_token if those attributes are not None. Returns a tuple of the
padded list and a list containing lengths of each example if
`self.include_lengths` is `True` and `self.sequential` is `True`, else just
returns the padded list. If `self.sequential` is `False`, no padding is applied.
"""
minibatch = list(minibatch)
if not self.sequential:
return minibatch
if self.fix_length is None:
max_len = max(len(x) for x in minibatch)
else:
max_len = self.fix_length + (
self.init_token, self.eos_token).count(None) - 2
padded, lengths = [], []
for x in minibatch:
if self.pad_first:
padded.append(
[self.pad_token] * max(0, max_len - len(x))
+ ([] if self.init_token is None else [self.init_token])
+ list(x[-max_len:] if self.truncate_first else x[:max_len])
+ ([] if self.eos_token is None else [self.eos_token]))
else:
padded.append(
([] if self.init_token is None else [self.init_token])
+ list(x[-max_len:] if self.truncate_first else x[:max_len])
+ ([] if self.eos_token is None else [self.eos_token])
+ [self.pad_token] * max(0, max_len - len(x)))
lengths.append(len(padded[-1]) - max(0, max_len - len(x)))
if self.include_lengths:
return (padded, lengths)
return padded
def build_vocab(self, *args, **kwargs):
"""Construct the Vocab object for this field from one or more datasets.
Arguments:
Positional arguments: Dataset objects or other iterable data
sources from which to construct the Vocab object that
represents the set of possible values for this field. If
a Dataset object is provided, all columns corresponding
to this field are used; individual columns can also be
provided directly.
Remaining keyword arguments: Passed to the constructor of Vocab.
"""
counter = Counter()
sources = []
for arg in args:
sources.append(arg)
for data in sources:
for x in data:
if not self.sequential:
x = [x]
try:
counter.update(x)
except TypeError:
counter.update(chain.from_iterable(x))
specials = list(OrderedDict.fromkeys(
tok for tok in [self.unk_token, self.pad_token, self.init_token,
self.eos_token] + kwargs.pop('specials', [])
if tok is not None))
self.vocab = self.vocab_cls(counter, specials=specials, **kwargs)
def numericalize(self, arr, device=None):
"""Turn a batch of examples that use this field into a Variable.
If the field has include_lengths=True, a tensor of lengths will be
included in the return value.
Arguments:
arr (List[List[str]], or tuple of (List[List[str]], List[int])):
List of tokenized and padded examples, or tuple of List of
tokenized and padded examples and List of lengths of each
example if self.include_lengths is True.
device (str or torch.device): A string or instance of `torch.device`
specifying which device the Variables are going to be created on.
If left as default, the tensors will be created on cpu. Default: None.
"""
if self.include_lengths and not isinstance(arr, tuple):
raise ValueError("Field has include_lengths set to True, but "
"input data is not a tuple of "
"(data batch, batch lengths).")
if isinstance(arr, tuple):
arr, lengths = arr
lengths = torch.tensor(lengths, dtype=self.dtype, device=device)
if self.use_vocab:
if self.sequential:
arr = [[self.vocab.stoi[x] for x in ex] for ex in arr]
else:
arr = [self.vocab.stoi[x] for x in arr]
if self.postprocessing is not None:
arr = self.postprocessing(arr, self.vocab)
else:
if self.dtype not in self.dtypes:
raise ValueError(
"Specified Field dtype {} can not be used with "
"use_vocab=False because we do not know how to numericalize it. "
"Please raise an issue at "
"https://github.com/pytorch/text/issues".format(self.dtype))
numericalization_func = self.dtypes[self.dtype]
# It doesn't make sense to explicitly coerce to a numeric type if
# the data is sequential, since it's unclear how to coerce padding tokens
# to a numeric type.
if not self.sequential:
arr = [numericalization_func(x) if isinstance(x, six.string_types)
else x for x in arr]
if self.postprocessing is not None:
arr = self.postprocessing(arr, None)
var = torch.tensor(arr, dtype=self.dtype, device=device)
if self.sequential and not self.batch_first:
var.t_()
if self.sequential:
var = var.contiguous()
if self.include_lengths:
return var, lengths
return var
class NestedField(Field):
"""A nested field.
A nested field holds another field (called *nesting field*), accepts an untokenized
string or a list string tokens and groups and treats them as one field as described
by the nesting field. Every token will be preprocessed, padded, etc. in the manner
specified by the nesting field. Note that this means a nested field always has
``sequential=True``. The two fields' vocabularies will be shared. Their
numericalization results will be stacked into a single tensor. And NestedField will
share the same include_lengths with nesting_field, so one shouldn't specify the
include_lengths in the nesting_field. This field is
primarily used to implement character embeddings. See ``tests/data/test_field.py``
for examples on how to use this field.
Arguments:
nesting_field (Field): A field contained in this nested field.
use_vocab (bool): Whether to use a Vocab object. If False, the data in this
field should already be numerical. Default: ``True``.
init_token (str): A token that will be prepended to every example using this
field, or None for no initial token. Default: ``None``.
eos_token (str): A token that will be appended to every example using this
field, or None for no end-of-sentence token. Default: ``None``.
fix_length (int): A fixed length that all examples using this field will be
padded to, or ``None`` for flexible sequence lengths. Default: ``None``.
dtype: The torch.dtype class that represents a batch of examples
of this kind of data. Default: ``torch.long``.
preprocessing (Pipeline): The Pipeline that will be applied to examples
using this field after tokenizing but before numericalizing. Many
Datasets replace this attribute with a custom preprocessor.
Default: ``None``.
postprocessing (Pipeline): A Pipeline that will be applied to examples using
this field after numericalizing but before the numbers are turned
into a Tensor. The pipeline function takes the batch as a list, and
the field's Vocab. Default: ``None``.
include_lengths: Whether to return a tuple of a padded minibatch and
a list containing the lengths of each examples, or just a padded
minibatch. Default: False.
tokenize: The function used to tokenize strings using this field into
sequential examples. If "spacy", the SpaCy tokenizer is
used. If a non-serializable function is passed as an argument,
the field will not be able to be serialized. Default: string.split.
tokenizer_language: The language of the tokenizer to be constructed.
Various languages currently supported only in SpaCy.
pad_token (str): The string token used as padding. If ``nesting_field`` is
sequential, this will be set to its ``pad_token``. Default: ``"<pad>"``.
pad_first (bool): Do the padding of the sequence at the beginning. Default:
``False``.
"""
def __init__(self, nesting_field, use_vocab=True, init_token=None, eos_token=None,
fix_length=None, dtype=torch.long, preprocessing=None,
postprocessing=None, tokenize=None, tokenizer_language='en',
include_lengths=False, pad_token='<pad>',
pad_first=False, truncate_first=False):
if isinstance(nesting_field, NestedField):
raise ValueError('nesting field must not be another NestedField')
if nesting_field.include_lengths:
raise ValueError('nesting field cannot have include_lengths=True')
if nesting_field.sequential:
pad_token = nesting_field.pad_token
super(NestedField, self).__init__(
use_vocab=use_vocab,
init_token=init_token,
eos_token=eos_token,
fix_length=fix_length,
dtype=dtype,
preprocessing=preprocessing,
postprocessing=postprocessing,
lower=nesting_field.lower,
tokenize=tokenize,
tokenizer_language=tokenizer_language,
batch_first=True,
pad_token=pad_token,
unk_token=nesting_field.unk_token,
pad_first=pad_first,
truncate_first=truncate_first,
include_lengths=include_lengths
)
self.nesting_field = nesting_field
# in case the user forget to do that
self.nesting_field.batch_first = True
def preprocess(self, xs):
"""Preprocess a single example.
Firstly, tokenization and the supplied preprocessing pipeline is applied. Since
this field is always sequential, the result is a list. Then, each element of
the list is preprocessed using ``self.nesting_field.preprocess`` and the resulting
list is returned.
Arguments:
xs (list or str): The input to preprocess.
Returns:
list: The preprocessed list.
"""
return [self.nesting_field.preprocess(x)
for x in super(NestedField, self).preprocess(xs)]
def pad(self, minibatch):
"""Pad a batch of examples using this field.
If ``self.nesting_field.sequential`` is ``False``, each example in the batch must
be a list of string tokens, and pads them as if by a ``Field`` with
``sequential=True``. Otherwise, each example must be a list of list of tokens.
Using ``self.nesting_field``, pads the list of tokens to
``self.nesting_field.fix_length`` if provided, or otherwise to the length of the
longest list of tokens in the batch. Next, using this field, pads the result by
filling short examples with ``self.nesting_field.pad_token``.
Example:
>>> import pprint
>>> pp = pprint.PrettyPrinter(indent=4)
>>>
>>> nesting_field = Field(pad_token='<c>', init_token='<w>', eos_token='</w>')
>>> field = NestedField(nesting_field, init_token='<s>', eos_token='</s>')
>>> minibatch = [
... [list('john'), list('loves'), list('mary')],
... [list('mary'), list('cries')],
... ]
>>> padded = field.pad(minibatch)
>>> pp.pprint(padded)
[ [ ['<w>', '<s>', '</w>', '<c>', '<c>', '<c>', '<c>'],
['<w>', 'j', 'o', 'h', 'n', '</w>', '<c>'],
['<w>', 'l', 'o', 'v', 'e', 's', '</w>'],
['<w>', 'm', 'a', 'r', 'y', '</w>', '<c>'],
['<w>', '</s>', '</w>', '<c>', '<c>', '<c>', '<c>']],
[ ['<w>', '<s>', '</w>', '<c>', '<c>', '<c>', '<c>'],
['<w>', 'm', 'a', 'r', 'y', '</w>', '<c>'],
['<w>', 'c', 'r', 'i', 'e', 's', '</w>'],
['<w>', '</s>', '</w>', '<c>', '<c>', '<c>', '<c>'],
['<c>', '<c>', '<c>', '<c>', '<c>', '<c>', '<c>']]]
Arguments:
minibatch (list): Each element is a list of string if
``self.nesting_field.sequential`` is ``False``, a list of list of string
otherwise.
Returns:
list: The padded minibatch. or (padded, sentence_lens, word_lengths)
"""
minibatch = list(minibatch)
if not self.nesting_field.sequential:
return super(NestedField, self).pad(minibatch)
# Save values of attributes to be monkeypatched
old_pad_token = self.pad_token
old_init_token = self.init_token
old_eos_token = self.eos_token
old_fix_len = self.nesting_field.fix_length
# Monkeypatch the attributes
if self.nesting_field.fix_length is None:
max_len = max(len(xs) for ex in minibatch for xs in ex)
fix_len = max_len + 2 - (self.nesting_field.init_token,
self.nesting_field.eos_token).count(None)
self.nesting_field.fix_length = fix_len
self.pad_token = [self.pad_token] * self.nesting_field.fix_length
if self.init_token is not None:
# self.init_token = self.nesting_field.pad([[self.init_token]])[0]
self.init_token = [self.init_token]
if self.eos_token is not None:
# self.eos_token = self.nesting_field.pad([[self.eos_token]])[0]
self.eos_token = [self.eos_token]
# Do padding
old_include_lengths = self.include_lengths
self.include_lengths = True
self.nesting_field.include_lengths = True
padded, sentence_lengths = super(NestedField, self).pad(minibatch)
padded_with_lengths = [self.nesting_field.pad(ex) for ex in padded]
word_lengths = []
final_padded = []
max_sen_len = len(padded[0])
for (pad, lens), sentence_len in zip(padded_with_lengths, sentence_lengths):
if sentence_len == max_sen_len:
lens = lens
pad = pad
elif self.pad_first:
lens[:(max_sen_len - sentence_len)] = (
[0] * (max_sen_len - sentence_len))
pad[:(max_sen_len - sentence_len)] = (
[self.pad_token] * (max_sen_len - sentence_len))
else:
lens[-(max_sen_len - sentence_len):] = (
[0] * (max_sen_len - sentence_len))
pad[-(max_sen_len - sentence_len):] = (
[self.pad_token] * (max_sen_len - sentence_len))
word_lengths.append(lens)
final_padded.append(pad)
padded = final_padded
# Restore monkeypatched attributes
self.nesting_field.fix_length = old_fix_len
self.pad_token = old_pad_token
self.init_token = old_init_token
self.eos_token = old_eos_token
self.include_lengths = old_include_lengths
if self.include_lengths:
return padded, sentence_lengths, word_lengths
return padded
def build_vocab(self, *args, **kwargs):
"""Construct the Vocab object for nesting field and combine it with this field's vocab.
Arguments:
Positional arguments: Dataset objects or other iterable data
sources from which to construct the Vocab object that
represents the set of possible values for the nesting field. If
a Dataset object is provided, all columns corresponding
to this field are used; individual columns can also be
provided directly.
Remaining keyword arguments: Passed to the constructor of Vocab.
"""
sources = []
for arg in args:
sources.append(arg)
flattened = []
for source in sources:
flattened.extend(source)
old_vectors = None
old_unk_init = None
old_vectors_cache = None
if "vectors" in kwargs.keys():
old_vectors = kwargs["vectors"]
kwargs["vectors"] = None
if "unk_init" in kwargs.keys():
old_unk_init = kwargs["unk_init"]
kwargs["unk_init"] = None
if "vectors_cache" in kwargs.keys():
old_vectors_cache = kwargs["vectors_cache"]
kwargs["vectors_cache"] = None
# just build vocab and does not load vector
self.nesting_field.build_vocab(*flattened, **kwargs)
super(NestedField, self).build_vocab()
self.vocab.extend(self.nesting_field.vocab)
self.vocab.freqs = self.nesting_field.vocab.freqs.copy()
if old_vectors is not None:
self.vocab.load_vectors(old_vectors,
unk_init=old_unk_init, cache=old_vectors_cache)
self.nesting_field.vocab = self.vocab
def numericalize(self, arrs, device=None):
"""Convert a padded minibatch into a variable tensor.
Each item in the minibatch will be numericalized independently and the resulting
tensors will be stacked at the first dimension.
Arguments:
arr (List[List[str]]): List of tokenized and padded examples.
device (str or torch.device): A string or instance of `torch.device`
specifying which device the Variables are going to be created on.
If left as default, the tensors will be created on cpu. Default: None.
"""
numericalized = []
self.nesting_field.include_lengths = False
if self.include_lengths:
arrs, sentence_lengths, word_lengths = arrs
for arr in arrs:
numericalized_ex = self.nesting_field.numericalize(
arr, device=device)
numericalized.append(numericalized_ex)
padded_batch = torch.stack(numericalized)
self.nesting_field.include_lengths = True
if self.include_lengths:
sentence_lengths = \
torch.tensor(sentence_lengths, dtype=self.dtype, device=device)
word_lengths = torch.tensor(word_lengths, dtype=self.dtype, device=device)
return (padded_batch, sentence_lengths, word_lengths)
return padded_batch