Spaces:
Sleeping
Sleeping
import os | |
from typing import List, Dict, Tuple, Optional, cast | |
from pydantic import SecretStr | |
from _utils.LLMs.LLM_class import LLM | |
from _utils.vector_stores.Vector_store_class import VectorStore | |
from setup.easy_imports import ( | |
Chroma, | |
ChatOpenAI, | |
PromptTemplate, | |
BM25Okapi, | |
Response, | |
HuggingFaceEmbeddings, | |
) | |
import logging | |
from _utils.gerar_relatorio_modelo_usuario.DocumentSummarizer_simples import ( | |
DocumentSummarizer, | |
) | |
from _utils.models.gerar_relatorio import ( | |
RetrievalConfig, | |
) | |
from cohere import Client | |
from _utils.splitters.Splitter_class import Splitter | |
class GerarDocumento: | |
openai_api_key = os.environ.get("OPENAI_API_KEY", "") | |
cohere_api_key = os.environ.get("COHERE_API_KEY", "") | |
resumo_gerado = "" | |
def __init__( | |
self, | |
config: RetrievalConfig, | |
embedding_model, | |
chunk_size, | |
chunk_overlap, | |
num_k_rerank, | |
model_cohere_rerank, | |
# prompt_auxiliar, | |
gpt_model, | |
gpt_temperature, | |
# id_modelo_do_usuario, | |
prompt_gerar_documento, | |
reciprocal_rank_fusion, | |
): | |
self.config = config | |
self.logger = logging.getLogger(__name__) | |
# self.prompt_auxiliar = prompt_auxiliar | |
self.gpt_model = gpt_model | |
self.gpt_temperature = gpt_temperature | |
self.prompt_gerar_documento = prompt_gerar_documento | |
self.reciprocal_rank_fusion = reciprocal_rank_fusion | |
self.openai_api_key = self.openai_api_key | |
self.cohere_client = Client(self.cohere_api_key) | |
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model) | |
self.num_k_rerank = num_k_rerank | |
self.model_cohere_rerank = model_cohere_rerank | |
self.splitter = Splitter(chunk_size, chunk_overlap) | |
self.vector_store = VectorStore(embedding_model) | |
def retrieve_with_rank_fusion( | |
self, vector_store: Chroma, bm25: BM25Okapi, chunk_ids: List[str], query: str | |
) -> List[Dict]: | |
"""Combine embedding and BM25 retrieval results""" | |
try: | |
# Get embedding results | |
embedding_results = vector_store.similarity_search_with_score( | |
query, k=self.config.num_chunks | |
) | |
# Convert embedding results to list of (chunk_id, score) | |
embedding_list = [ | |
(doc.metadata["chunk_id"], 1 / (1 + score)) | |
for doc, score in embedding_results | |
] | |
# Get BM25 results | |
tokenized_query = query.split() | |
bm25_scores = bm25.get_scores(tokenized_query) | |
# Convert BM25 scores to list of (chunk_id, score) | |
bm25_list = [ | |
(chunk_ids[i], float(score)) for i, score in enumerate(bm25_scores) | |
] | |
# Sort bm25_list by score in descending order and limit to top N results | |
bm25_list = sorted(bm25_list, key=lambda x: x[1], reverse=True)[ | |
: self.config.num_chunks | |
] | |
# Normalize BM25 scores | |
calculo_max = max( | |
[score for _, score in bm25_list] | |
) # Criei este max() pois em alguns momentos estava vindo valores 0, e reclamava que não podia dividir por 0 | |
max_bm25 = calculo_max if bm25_list and calculo_max else 1 | |
bm25_list = [(doc_id, score / max_bm25) for doc_id, score in bm25_list] | |
# Pass the lists to rank fusion | |
result_lists = [embedding_list, bm25_list] | |
weights = [self.config.embedding_weight, self.config.bm25_weight] | |
combined_results = self.reciprocal_rank_fusion( | |
result_lists, weights=weights | |
) | |
return combined_results | |
except Exception as e: | |
self.logger.error(f"Error in rank fusion retrieval: {str(e)}") | |
raise | |
def rank_fusion_get_top_results( | |
self, | |
vector_store: Chroma, | |
bm25: BM25Okapi, | |
chunk_ids: List[str], | |
query: str = "Summarize the main points of this document", | |
): | |
# Get combined results using rank fusion | |
ranked_results = self.retrieve_with_rank_fusion( | |
vector_store, bm25, chunk_ids, query | |
) | |
# Prepare context and track sources | |
contexts = [] | |
sources = [] | |
# Get full documents for top results | |
for chunk_id, score in ranked_results[: self.config.num_chunks]: | |
results = vector_store.get( | |
where={"chunk_id": chunk_id}, include=["documents", "metadatas"] | |
) | |
if results["documents"]: | |
context = results["documents"][0] | |
metadata = results["metadatas"][0] | |
contexts.append(context) | |
sources.append( | |
{ | |
"content": context, | |
"page": metadata["page"], | |
"chunk_id": chunk_id, | |
"relevance_score": score, | |
"context": metadata.get("context", ""), | |
} | |
) | |
return sources, contexts | |
def select_model_for_last_requests(self, llm_ultimas_requests: str): | |
llm_instance = LLM() | |
if llm_ultimas_requests == "gpt-4o-mini": | |
llm = ChatOpenAI( | |
temperature=self.gpt_temperature, | |
model=self.gpt_model, | |
api_key=SecretStr(self.openai_api_key), | |
) | |
elif llm_ultimas_requests == "deepseek-chat": | |
llm = llm_instance.deepseek() | |
elif llm_ultimas_requests == "gemini-2.0-flash": | |
llm = llm_instance.google_gemini("gemini-2.0-flash") | |
return llm | |
async def gerar_documento_final( | |
self, | |
vector_store: Chroma, | |
bm25: BM25Okapi, | |
chunk_ids: List[str], | |
llm_ultimas_requests: str, | |
query: str = "Summarize the main points of this document", | |
) -> List[Dict]: | |
try: | |
sources, contexts = self.rank_fusion_get_top_results( | |
vector_store, bm25, chunk_ids, query | |
) | |
llm = self.select_model_for_last_requests(llm_ultimas_requests) | |
# prompt_auxiliar = PromptTemplate( | |
# template=self.prompt_auxiliar, input_variables=["context"] | |
# ) | |
# resumo_auxiliar_do_documento = llm.invoke( | |
# prompt_auxiliar.format(context="\n\n".join(contexts)) | |
# ) | |
# self.resumo_gerado = cast(str, resumo_auxiliar_do_documento.content) | |
prompt_gerar_documento = PromptTemplate( | |
template=self.prompt_gerar_documento, | |
input_variables=["context"], | |
) | |
documento_gerado = cast( | |
str, | |
llm.invoke( | |
prompt_gerar_documento.format( | |
context="\n\n".join(contexts), | |
# modelo_usuario=serializer.data["modelo"], | |
) | |
).content, | |
) | |
# Split the response into paragraphs | |
summaries = [p.strip() for p in documento_gerado.split("\n\n") if p.strip()] | |
# Create structured output | |
structured_output = [] | |
for idx, summary in enumerate(summaries): | |
source_idx = min(idx, len(sources) - 1) | |
structured_output.append( | |
{ | |
"content": summary, | |
"source": { | |
"page": sources[source_idx]["page"], | |
"text": sources[source_idx]["content"][:200] + "...", | |
"context": sources[source_idx]["context"], | |
"relevance_score": sources[source_idx]["relevance_score"], | |
"chunk_id": sources[source_idx]["chunk_id"], | |
}, | |
} | |
) | |
return structured_output | |
except Exception as e: | |
self.logger.error(f"Error generating enhanced summary: {str(e)}") | |
raise | |