Spaces:
Sleeping
Sleeping
import gradio as gr | |
import openai | |
# We assume the Hugging Face Inference API is OpenAI-compatible. | |
# For each LLM, set openai.api_base to the model's endpoint and then call openai.ChatCompletion. | |
# Your Hugging Face API key | |
HF_API_KEY = "hf_1234" | |
# Model endpoints on Hugging Face | |
MODEL_ENDPOINTS = { | |
"Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct", | |
"Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct", | |
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct", | |
} | |
# Query a specific model using OpenAI-compatible ChatCompletion | |
def query_model(prompt, model_endpoint): | |
openai.api_key = HF_API_KEY | |
openai.api_base = model_endpoint | |
response = openai.ChatCompletion.create( | |
model="any-model-placeholder", # placeholder name, not actually used by the HF endpoint | |
messages=[{"role": "user", "content": prompt}], | |
max_tokens=512, | |
temperature=0.7 | |
) | |
return response.choices[0].message["content"] | |
def chat_with_models(user_input, history): | |
# Let each model provide its own contribution | |
responses = [] | |
for model_name, endpoint in MODEL_ENDPOINTS.items(): | |
model_response = query_model(user_input, endpoint) | |
responses.append(f"**{model_name}**: {model_response}") | |
# Combine all responses in a single answer | |
combined_answer = "\n\n".join(responses) | |
history.append((user_input, combined_answer)) | |
return history, history | |
with gr.Blocks() as demo: | |
gr.Markdown("# Multi-LLM Chatbot using Hugging Face Inference API") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="Your Message") | |
clear = gr.Button("Clear") | |
def clear_chat(): | |
return [], [] | |
msg.submit(chat_with_models, [msg, chatbot], [chatbot, chatbot]) | |
clear.click(fn=clear_chat, outputs=[chatbot, chatbot]) | |
demo.launch() | |