File size: 40,434 Bytes
9bb5689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
#!/usr/bin/env python
# coding=utf-8

# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
import base64
import importlib
import inspect
import io
import json
import os
import tempfile
import textwrap
from functools import lru_cache, wraps
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union

from huggingface_hub import (
    create_repo,
    get_collection,
    hf_hub_download,
    metadata_update,
    upload_folder,
)
from huggingface_hub.utils import RepositoryNotFoundError, build_hf_headers, get_session
from packaging import version

from transformers.dynamic_module_utils import (
    custom_object_save,
    get_class_from_dynamic_module,
    get_imports,
)
from transformers import AutoProcessor
from transformers.utils import (
    CONFIG_NAME,
    TypeHintParsingException,
    cached_file,
    get_json_schema,
    is_accelerate_available,
    is_torch_available,
    is_vision_available,
)
from .types import ImageType, handle_agent_inputs, handle_agent_outputs
import logging

logger = logging.getLogger(__name__)


if is_torch_available():
    import torch

if is_accelerate_available():
    from accelerate import PartialState
    from accelerate.utils import send_to_device


TOOL_CONFIG_FILE = "tool_config.json"


def get_repo_type(repo_id, repo_type=None, **hub_kwargs):
    if repo_type is not None:
        return repo_type
    try:
        hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space", **hub_kwargs)
        return "space"
    except RepositoryNotFoundError:
        try:
            hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="model", **hub_kwargs)
            return "model"
        except RepositoryNotFoundError:
            raise EnvironmentError(
                f"`{repo_id}` does not seem to be a valid repo identifier on the Hub."
            )
        except Exception:
            return "model"
    except Exception:
        return "space"


def setup_default_tools():
    default_tools = {}
    main_module = importlib.import_module("transformers")
    tools_module = main_module.agents

    for task_name, tool_class_name in TOOL_MAPPING.items():
        tool_class = getattr(tools_module, tool_class_name)
        tool_instance = tool_class()
        default_tools[tool_class.name] = tool_instance

    return default_tools


# docstyle-ignore
APP_FILE_TEMPLATE = """from transformers import launch_gradio_demo
from {module_name} import {class_name}

launch_gradio_demo({class_name})
"""


def validate_after_init(cls, do_validate_forward: bool = True):
    original_init = cls.__init__

    @wraps(original_init)
    def new_init(self, *args, **kwargs):
        original_init(self, *args, **kwargs)
        self.validate_arguments(do_validate_forward=do_validate_forward)

    cls.__init__ = new_init
    return cls

def validate_forward_method_args(cls):
    """Validates that all names in forward method are properly defined.
    In particular it will check that all imports are done within the function."""
    if 'forward' not in cls.__dict__:
        return

    forward = cls.__dict__['forward']
    source_code = textwrap.dedent(inspect.getsource(forward))
    tree = ast.parse(source_code)
    
    # Get function arguments
    func_node = tree.body[0]
    arg_names = {arg.arg for arg in func_node.args.args}


    import builtins
    builtin_names = set(vars(builtins))

    
    # Find all used names that aren't arguments or self attributes
    class NameChecker(ast.NodeVisitor):
        def __init__(self):
            self.undefined_names = set()
            self.imports = {}
            self.from_imports = {}

        def visit_Import(self, node):
            """Handle simple imports like 'import datetime'."""
            for name in node.names:
                actual_name = name.asname or name.name
                self.imports[actual_name] = (name.name, actual_name)
                
        def visit_ImportFrom(self, node):
            """Handle from imports like 'from datetime import datetime'."""
            module = node.module or ''
            for name in node.names:
                actual_name = name.asname or name.name
                self.from_imports[actual_name] = (module, name.name, actual_name)
            
        def visit_Name(self, node):
            if (isinstance(node.ctx, ast.Load) and not (
                node.id == "tool" or
                node.id in builtin_names or
                node.id in arg_names or 
                node.id == 'self'
            )):
                if node.id not in self.from_imports and node.id not in self.imports:
                    self.undefined_names.add(node.id)
                
        def visit_Attribute(self, node):
            # Skip self.something
            if not (isinstance(node.value, ast.Name) and node.value.id == 'self'):
                self.generic_visit(node)
    
    checker = NameChecker()
    checker.visit(tree)
    
    if checker.undefined_names:
        raise ValueError(
            f"""The following names in forward method are not defined: {', '.join(checker.undefined_names)}.
            Make sure all imports and variables are defined within the method.
            For instance:
            
            """
        )

AUTHORIZED_TYPES = [
    "string",
    "boolean",
    "integer",
    "number",
    "image",
    "audio",
    "any",
]

CONVERSION_DICT = {"str": "string", "int": "integer", "float": "number"}


class Tool:
    """
    A base class for the functions used by the agent. Subclass this and implement the `forward` method as well as the
    following class attributes:

    - **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it
      will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and
      returns the text contained in the file'.
    - **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance
      `"text-classifier"` or `"image_generator"`.
    - **inputs** (`Dict[str, Dict[str, Union[str, type]]]`) -- The dict of modalities expected for the inputs.
      It has one `type`key and a `description`key.
      This is used by `launch_gradio_demo` or to make a nice space from your tool, and also can be used in the generated
      description for your tool.
    - **output_type** (`type`) -- The type of the tool output. This is used by `launch_gradio_demo`
      or to make a nice space from your tool, and also can be used in the generated description for your tool.

    You can also override the method [`~Tool.setup`] if your tool has an expensive operation to perform before being
    usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at
    instantiation.
    """

    name: str
    description: str
    inputs: Dict[str, Dict[str, Union[str, type]]]
    output_type: str

    def __init__(self, *args, **kwargs):
        self.is_initialized = False

    def __init_subclass__(cls, **kwargs):
        super().__init_subclass__(**kwargs)
        validate_forward_method_args(cls)
        validate_after_init(cls, do_validate_forward=False)


    def validate_arguments(self, do_validate_forward: bool = True):
        required_attributes = {
            "description": str,
            "name": str,
            "inputs": dict,
            "output_type": str,
        }

        for attr, expected_type in required_attributes.items():
            attr_value = getattr(self, attr, None)
            if attr_value is None:
                raise TypeError(f"You must set an attribute {attr}.")
            if not isinstance(attr_value, expected_type):
                raise TypeError(
                    f"Attribute {attr} should have type {expected_type.__name__}, got {type(attr_value)} instead."
                )
        for input_name, input_content in self.inputs.items():
            assert isinstance(
                input_content, dict
            ), f"Input '{input_name}' should be a dictionary."
            assert (
                "type" in input_content and "description" in input_content
            ), f"Input '{input_name}' should have keys 'type' and 'description', has only {list(input_content.keys())}."
            if input_content["type"] not in AUTHORIZED_TYPES:
                raise Exception(
                    f"Input '{input_name}': type '{input_content['type']}' is not an authorized value, should be one of {AUTHORIZED_TYPES}."
                )

        assert getattr(self, "output_type", None) in AUTHORIZED_TYPES
        if do_validate_forward:
            signature = inspect.signature(self.forward)
            if not set(signature.parameters.keys()) == set(self.inputs.keys()):
                raise Exception(
                    "Tool's 'forward' method should take 'self' as its first argument, then its next arguments should match the keys of tool attribute 'inputs'."
                )

    def forward(self, *args, **kwargs):
        return NotImplementedError("Write this method in your subclass of `Tool`.")

    def __call__(self, *args, **kwargs):
        if not self.is_initialized:
            self.setup()
        args, kwargs = handle_agent_inputs(*args, **kwargs)
        outputs = self.forward(*args, **kwargs)
        return handle_agent_outputs(outputs, self.output_type)

    def setup(self):
        """
        Overwrite this method here for any operation that is expensive and needs to be executed before you start using
        your tool. Such as loading a big model.
        """
        self.is_initialized = True

    def save(self, output_dir):
        """
        Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your
        tool in `output_dir` as well as autogenerate:

        - an `app.py` file so that your tool can be converted to a space
        - a `requirements.txt` containing the names of the module used by your tool (as detected when inspecting its
          code)

        You should only use this method to save tools that are defined in a separate module (not `__main__`).

        Args:
            output_dir (`str`): The folder in which you want to save your tool.
        """
        os.makedirs(output_dir, exist_ok=True)
        # Save module file
        if self.__module__ == "__main__":
            raise ValueError(
                f"We can't save the code defining {self} in {output_dir} as it's been defined in __main__. You "
                "have to put this code in a separate module so we can include it in the saved folder."
            )
        module_files = custom_object_save(self, output_dir)

        module_name = self.__class__.__module__
        last_module = module_name.split(".")[-1]
        full_name = f"{last_module}.{self.__class__.__name__}"

        # Save config file
        config_file = os.path.join(output_dir, "tool_config.json")
        if os.path.isfile(config_file):
            with open(config_file, "r", encoding="utf-8") as f:
                tool_config = json.load(f)
        else:
            tool_config = {}

        tool_config = {
            "tool_class": full_name,
            "description": self.description,
            "name": self.name,
            "inputs": self.inputs,
            "output_type": str(self.output_type),
        }
        with open(config_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(tool_config, indent=2, sort_keys=True) + "\n")

        # Save app file
        app_file = os.path.join(output_dir, "app.py")
        with open(app_file, "w", encoding="utf-8") as f:
            f.write(
                APP_FILE_TEMPLATE.format(
                    module_name=last_module, class_name=self.__class__.__name__
                )
            )

        # Save requirements file
        requirements_file = os.path.join(output_dir, "requirements.txt")
        imports = []
        for module in module_files:
            imports.extend(get_imports(module))
        imports = list(set(imports))
        with open(requirements_file, "w", encoding="utf-8") as f:
            f.write("\n".join(imports) + "\n")

    @classmethod
    def from_hub(
        cls,
        repo_id: str,
        token: Optional[str] = None,
        **kwargs,
    ):
        """
        Loads a tool defined on the Hub.

        <Tip warning={true}>

        Loading a tool from the Hub means that you'll download the tool and execute it locally.
        ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
        installing a package using pip/npm/apt.

        </Tip>

        Args:
            repo_id (`str`):
                The name of the repo on the Hub where your tool is defined.
            token (`str`, *optional*):
                The token to identify you on hf.co. If unset, will use the token generated when running
                `huggingface-cli login` (stored in `~/.huggingface`).
            kwargs (additional keyword arguments, *optional*):
                Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
                `cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the
                others will be passed along to its init.
        """
        hub_kwargs_names = [
            "cache_dir",
            "force_download",
            "resume_download",
            "proxies",
            "revision",
            "repo_type",
            "subfolder",
            "local_files_only",
        ]
        hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names}

        # Try to get the tool config first.
        hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs)
        resolved_config_file = cached_file(
            repo_id,
            TOOL_CONFIG_FILE,
            token=token,
            **hub_kwargs,
            _raise_exceptions_for_gated_repo=False,
            _raise_exceptions_for_missing_entries=False,
            _raise_exceptions_for_connection_errors=False,
        )
        is_tool_config = resolved_config_file is not None
        if resolved_config_file is None:
            resolved_config_file = cached_file(
                repo_id,
                CONFIG_NAME,
                token=token,
                **hub_kwargs,
                _raise_exceptions_for_gated_repo=False,
                _raise_exceptions_for_missing_entries=False,
                _raise_exceptions_for_connection_errors=False,
            )
        if resolved_config_file is None:
            raise EnvironmentError(
                f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`."
            )

        with open(resolved_config_file, encoding="utf-8") as reader:
            config = json.load(reader)

        if not is_tool_config:
            if "custom_tool" not in config:
                raise EnvironmentError(
                    f"{repo_id} does not provide a mapping to custom tools in its configuration `config.json`."
                )
            custom_tool = config["custom_tool"]
        else:
            custom_tool = config

        tool_class = custom_tool["tool_class"]
        tool_class = get_class_from_dynamic_module(
            tool_class, repo_id, token=token, **hub_kwargs
        )

        if len(tool_class.name) == 0:
            tool_class.name = custom_tool["name"]
        if tool_class.name != custom_tool["name"]:
            logger.warning(
                f"{tool_class.__name__} implements a different name in its configuration and class. Using the tool "
                "configuration name."
            )
            tool_class.name = custom_tool["name"]

        if len(tool_class.description) == 0:
            tool_class.description = custom_tool["description"]
        if tool_class.description != custom_tool["description"]:
            logger.warning(
                f"{tool_class.__name__} implements a different description in its configuration and class. Using the "
                "tool configuration description."
            )
            tool_class.description = custom_tool["description"]

        if tool_class.inputs != custom_tool["inputs"]:
            tool_class.inputs = custom_tool["inputs"]
        if tool_class.output_type != custom_tool["output_type"]:
            tool_class.output_type = custom_tool["output_type"]

        if not isinstance(tool_class.inputs, dict):
            tool_class.inputs = ast.literal_eval(tool_class.inputs)

        return tool_class(**kwargs)

    def push_to_hub(
        self,
        repo_id: str,
        commit_message: str = "Upload tool",
        private: Optional[bool] = None,
        token: Optional[Union[bool, str]] = None,
        create_pr: bool = False,
    ) -> str:
        """
        Upload the tool to the Hub.

        For this method to work properly, your tool must have been defined in a separate module (not `__main__`).
        For instance:
        ```
        from my_tool_module import MyTool
        my_tool = MyTool()
        my_tool.push_to_hub("my-username/my-space")
        ```

        Parameters:
            repo_id (`str`):
                The name of the repository you want to push your tool to. It should contain your organization name when
                pushing to a given organization.
            commit_message (`str`, *optional*, defaults to `"Upload tool"`):
                Message to commit while pushing.
            private (`bool`, *optional*):
                Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists.
            token (`bool` or `str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether or not to create a PR with the uploaded files or directly commit.
        """
        repo_url = create_repo(
            repo_id=repo_id,
            token=token,
            private=private,
            exist_ok=True,
            repo_type="space",
            space_sdk="gradio",
        )
        repo_id = repo_url.repo_id
        metadata_update(repo_id, {"tags": ["tool"]}, repo_type="space")

        with tempfile.TemporaryDirectory() as work_dir:
            # Save all files.
            self.save(work_dir)
            logger.info(
                f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}"
            )
            return upload_folder(
                repo_id=repo_id,
                commit_message=commit_message,
                folder_path=work_dir,
                token=token,
                create_pr=create_pr,
                repo_type="space",
            )

    @staticmethod
    def from_space(
        space_id: str,
        name: str,
        description: str,
        api_name: Optional[str] = None,
        token: Optional[str] = None,
    ):
        """
        Creates a [`Tool`] from a Space given its id on the Hub.

        Args:
            space_id (`str`):
                The id of the Space on the Hub.
            name (`str`):
                The name of the tool.
            description (`str`):
                The description of the tool.
            api_name (`str`, *optional*):
                The specific api_name to use, if the space has several tabs. If not precised, will default to the first available api.
            token (`str`, *optional*):
                Add your token to access private spaces or increase your GPU quotas.
        Returns:
            [`Tool`]:
                The Space, as a tool.

        Examples:
        ```
        image_generator = Tool.from_space(
            space_id="black-forest-labs/FLUX.1-schnell",
            name="image-generator",
            description="Generate an image from a prompt"
        )
        image = image_generator("Generate an image of a cool surfer in Tahiti")
        ```
        ```
        face_swapper = Tool.from_space(
            "tuan2308/face-swap",
            "face_swapper",
            "Tool that puts the face shown on the first image on the second image. You can give it paths to images.",
        )
        image = face_swapper('./aymeric.jpeg', './ruth.jpg')
        ```
        """
        from gradio_client import Client, handle_file
        from gradio_client.utils import is_http_url_like

        class SpaceToolWrapper(Tool):
            def __init__(
                self,
                space_id: str,
                name: str,
                description: str,
                api_name: Optional[str] = None,
                token: Optional[str] = None,
            ):
                self.client = Client(space_id, hf_token=token)
                self.name = name
                self.description = description
                space_description = self.client.view_api(
                    return_format="dict", print_info=False
                )["named_endpoints"]

                # If api_name is not defined, take the first of the available APIs for this space
                if api_name is None:
                    api_name = list(space_description.keys())[0]
                    logger.warning(
                        f"Since `api_name` was not defined, it was automatically set to the first avilable API: `{api_name}`."
                    )
                self.api_name = api_name

                try:
                    space_description_api = space_description[api_name]
                except KeyError:
                    raise KeyError(
                        f"Could not find specified {api_name=} among available api names."
                    )

                self.inputs = {}
                for parameter in space_description_api["parameters"]:
                    if not parameter["parameter_has_default"]:
                        parameter_type = parameter["type"]["type"]
                        if parameter_type == "object":
                            parameter_type = "any"
                        self.inputs[parameter["parameter_name"]] = {
                            "type": parameter_type,
                            "description": parameter["python_type"]["description"],
                        }
                output_component = space_description_api["returns"][0]["component"]
                if output_component == "Image":
                    self.output_type = "image"
                elif output_component == "Audio":
                    self.output_type = "audio"
                else:
                    self.output_type = "any"

            def sanitize_argument_for_prediction(self, arg):
                if isinstance(arg, ImageType):
                    temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
                    arg.save(temp_file.name)
                    arg = temp_file.name
                if (
                    isinstance(arg, (str, Path))
                    and Path(arg).exists()
                    and Path(arg).is_file()
                ) or is_http_url_like(arg):
                    arg = handle_file(arg)
                return arg

            def forward(self, *args, **kwargs):
                # Preprocess args and kwargs:
                args = list(args)
                for i, arg in enumerate(args):
                    args[i] = self.sanitize_argument_for_prediction(arg)
                for arg_name, arg in kwargs.items():
                    kwargs[arg_name] = self.sanitize_argument_for_prediction(arg)

                output = self.client.predict(*args, api_name=self.api_name, **kwargs)
                if isinstance(output, tuple) or isinstance(output, list):
                    return output[
                        0
                    ]  # Sometime the space also returns the generation seed, in which case the result is at index 0
                return output

        return SpaceToolWrapper(
            space_id, name, description, api_name=api_name, token=token
        )

    @staticmethod
    def from_gradio(gradio_tool):
        """
        Creates a [`Tool`] from a gradio tool.
        """
        import inspect

        class GradioToolWrapper(Tool):
            def __init__(self, _gradio_tool):
                self.name = _gradio_tool.name
                self.description = _gradio_tool.description
                self.output_type = "string"
                self._gradio_tool = _gradio_tool
                func_args = list(inspect.signature(_gradio_tool.run).parameters.items())
                self.inputs = {
                    key: {"type": CONVERSION_DICT[value.annotation], "description": ""}
                    for key, value in func_args
                }
                self.forward = self._gradio_tool.run

        return GradioToolWrapper(gradio_tool)

    @staticmethod
    def from_langchain(langchain_tool):
        """
        Creates a [`Tool`] from a langchain tool.
        """

        class LangChainToolWrapper(Tool):
            def __init__(self, _langchain_tool):
                self.name = _langchain_tool.name.lower()
                self.description = _langchain_tool.description
                self.inputs = _langchain_tool.args.copy()
                for input_content in self.inputs.values():
                    if "title" in input_content:
                        input_content.pop("title")
                    input_content["description"] = ""
                self.output_type = "string"
                self.langchain_tool = _langchain_tool

            def forward(self, *args, **kwargs):
                tool_input = kwargs.copy()
                for index, argument in enumerate(args):
                    if index < len(self.inputs):
                        input_key = next(iter(self.inputs))
                        tool_input[input_key] = argument
                return self.langchain_tool.run(tool_input)

        return LangChainToolWrapper(langchain_tool)


DEFAULT_TOOL_DESCRIPTION_TEMPLATE = """
- {{ tool.name }}: {{ tool.description }}
    Takes inputs: {{tool.inputs}}
    Returns an output of type: {{tool.output_type}}
"""


def get_tool_description_with_args(
    tool: Tool, description_template: Optional[str] = None
) -> str:
    if description_template is None:
        description_template = DEFAULT_TOOL_DESCRIPTION_TEMPLATE
    compiled_template = compile_jinja_template(description_template)
    rendered = compiled_template.render(
        tool=tool,
    )
    return rendered


@lru_cache
def compile_jinja_template(template):
    try:
        import jinja2
        from jinja2.exceptions import TemplateError
        from jinja2.sandbox import ImmutableSandboxedEnvironment
    except ImportError:
        raise ImportError("template requires jinja2 to be installed.")

    if version.parse(jinja2.__version__) < version.parse("3.1.0"):
        raise ImportError(
            "template requires jinja2>=3.1.0 to be installed. Your version is "
            f"{jinja2.__version__}."
        )

    def raise_exception(message):
        raise TemplateError(message)

    jinja_env = ImmutableSandboxedEnvironment(trim_blocks=True, lstrip_blocks=True)
    jinja_env.globals["raise_exception"] = raise_exception
    return jinja_env.from_string(template)


def launch_gradio_demo(tool_class: Tool):
    """
    Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes
    `inputs` and `output_type`.

    Args:
        tool_class (`type`): The class of the tool for which to launch the demo.
    """
    try:
        import gradio as gr
    except ImportError:
        raise ImportError(
            "Gradio should be installed in order to launch a gradio demo."
        )

    tool = tool_class()

    def fn(*args, **kwargs):
        return tool(*args, **kwargs)

    TYPE_TO_COMPONENT_CLASS_MAPPING = {
        "image": gr.Image,
        "audio": gr.Audio,
        "string": gr.Textbox,
        "integer": gr.Textbox,
        "number": gr.Textbox,
    }

    gradio_inputs = []
    for input_name, input_details in tool_class.inputs.items():
        input_gradio_component_class = TYPE_TO_COMPONENT_CLASS_MAPPING[
            input_details["type"]
        ]
        new_component = input_gradio_component_class(label=input_name)
        gradio_inputs.append(new_component)

    output_gradio_componentclass = TYPE_TO_COMPONENT_CLASS_MAPPING[
        tool_class.output_type
    ]
    gradio_output = output_gradio_componentclass(label=input_name)

    gr.Interface(
        fn=fn,
        inputs=gradio_inputs,
        outputs=gradio_output,
        title=tool_class.__name__,
        article=tool.description,
    ).launch()


TOOL_MAPPING = {
    "python_interpreter": "PythonInterpreterTool",
    "web_search": "DuckDuckGoSearchTool",
}


def load_tool(task_or_repo_id, model_repo_id=None, token=None, **kwargs):
    """
    Main function to quickly load a tool, be it on the Hub or in the Transformers library.

    <Tip warning={true}>

    Loading a tool means that you'll download the tool and execute it locally.
    ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
    installing a package using pip/npm/apt.

    </Tip>

    Args:
        task_or_repo_id (`str`):
            The task for which to load the tool or a repo ID of a tool on the Hub. Tasks implemented in Transformers
            are:

            - `"document_question_answering"`
            - `"image_question_answering"`
            - `"speech_to_text"`
            - `"text_to_speech"`
            - `"translation"`

        model_repo_id (`str`, *optional*):
            Use this argument to use a different model than the default one for the tool you selected.
        token (`str`, *optional*):
            The token to identify you on hf.co. If unset, will use the token generated when running `huggingface-cli
            login` (stored in `~/.huggingface`).
        kwargs (additional keyword arguments, *optional*):
            Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
            `cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the others
            will be passed along to its init.
    """
    if task_or_repo_id in TOOL_MAPPING:
        tool_class_name = TOOL_MAPPING[task_or_repo_id]
        main_module = importlib.import_module("agents")
        tools_module = main_module
        tool_class = getattr(tools_module, tool_class_name)
        return tool_class(model_repo_id, token=token, **kwargs)
    else:
        logger.warning_once(
            f"You're loading a tool from the Hub from {model_repo_id}. Please make sure this is a source that you "
            f"trust as the code within that tool will be executed on your machine. Always verify the code of "
            f"the tools that you load. We recommend specifying a `revision` to ensure you're loading the "
            f"code that you have checked."
        )
        return Tool.from_hub(
            task_or_repo_id, model_repo_id=model_repo_id, token=token, **kwargs
        )


def add_description(description):
    """
    A decorator that adds a description to a function.
    """

    def inner(func):
        func.description = description
        func.name = func.__name__
        return func

    return inner


## Will move to the Hub
class EndpointClient:
    def __init__(self, endpoint_url: str, token: Optional[str] = None):
        self.headers = {
            **build_hf_headers(token=token),
            "Content-Type": "application/json",
        }
        self.endpoint_url = endpoint_url

    @staticmethod
    def encode_image(image):
        _bytes = io.BytesIO()
        image.save(_bytes, format="PNG")
        b64 = base64.b64encode(_bytes.getvalue())
        return b64.decode("utf-8")

    @staticmethod
    def decode_image(raw_image):
        if not is_vision_available():
            raise ImportError(
                "This tool returned an image but Pillow is not installed. Please install it (`pip install Pillow`)."
            )

        from PIL import Image

        b64 = base64.b64decode(raw_image)
        _bytes = io.BytesIO(b64)
        return Image.open(_bytes)

    def __call__(
        self,
        inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None,
        params: Optional[Dict] = None,
        data: Optional[bytes] = None,
        output_image: bool = False,
    ) -> Any:
        # Build payload
        payload = {}
        if inputs:
            payload["inputs"] = inputs
        if params:
            payload["parameters"] = params

        # Make API call
        response = get_session().post(
            self.endpoint_url, headers=self.headers, json=payload, data=data
        )

        # By default, parse the response for the user.
        if output_image:
            return self.decode_image(response.content)
        else:
            return response.json()


class ToolCollection:
    """
    Tool collections enable loading all Spaces from a collection in order to be added to the agent's toolbox.

    > [!NOTE]
    > Only Spaces will be fetched, so you can feel free to add models and datasets to your collection if you'd
    > like for this collection to showcase them.

    Args:
        collection_slug (str):
            The collection slug referencing the collection.
        token (str, *optional*):
            The authentication token if the collection is private.

    Example:

    ```py
    >>> from transformers import ToolCollection, CodeAgent

    >>> image_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
    >>> agent = CodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)

    >>> agent.run("Please draw me a picture of rivers and lakes.")
    ```
    """

    def __init__(self, collection_slug: str, token: Optional[str] = None):
        self._collection = get_collection(collection_slug, token=token)
        self._hub_repo_ids = {
            item.item_id for item in self._collection.items if item.item_type == "space"
        }
        self.tools = {Tool.from_hub(repo_id) for repo_id in self._hub_repo_ids}


def tool(tool_function: Callable) -> Tool:
    """
    Converts a function into an instance of a Tool subclass.

    Args:
        tool_function: Your function. Should have type hints for each input and a type hint for the output.
        Should also have a docstring description including an 'Args:' part where each argument is described.
    """
    parameters = get_json_schema(tool_function)["function"]
    if "return" not in parameters:
        raise TypeHintParsingException(
            "Tool return type not found: make sure your function has a return type hint!"
        )
    class_name = f"{parameters['name'].capitalize()}Tool"
    if parameters["return"]["type"] == "object":
        parameters["return"]["type"] = "any"

    class SpecificTool(Tool):
        name = parameters["name"]
        description = parameters["description"]
        inputs = parameters["parameters"]["properties"]
        output_type = parameters["return"]["type"]

        @wraps(tool_function)
        def forward(self, *args, **kwargs):
            return tool_function(*args, **kwargs)

    original_signature = inspect.signature(tool_function)
    new_parameters = [
        inspect.Parameter("self", inspect.Parameter.POSITIONAL_OR_KEYWORD)
    ] + list(original_signature.parameters.values())
    new_signature = original_signature.replace(parameters=new_parameters)
    SpecificTool.forward.__signature__ = new_signature
    SpecificTool.__name__ = class_name
    return SpecificTool()


HUGGINGFACE_DEFAULT_TOOLS = {}


class Toolbox:
    """
    The toolbox contains all tools that the agent can perform operations with, as well as a few methods to
    manage them.

    Args:
        tools (`List[Tool]`):
            The list of tools to instantiate the toolbox with
        add_base_tools (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to add the tools available within `transformers` to the toolbox.
    """

    def __init__(self, tools: List[Tool], add_base_tools: bool = False):
        self._tools = {tool.name: tool for tool in tools}
        if add_base_tools:
            self.add_base_tools()

    def add_base_tools(self, add_python_interpreter: bool = False):
        global HUGGINGFACE_DEFAULT_TOOLS
        if len(HUGGINGFACE_DEFAULT_TOOLS.keys()) == 0:
            HUGGINGFACE_DEFAULT_TOOLS = setup_default_tools()
        for tool in HUGGINGFACE_DEFAULT_TOOLS.values():
            if tool.name != "python_interpreter" or add_python_interpreter:
                self.add_tool(tool)

    @property
    def tools(self) -> Dict[str, Tool]:
        """Get all tools currently in the toolbox"""
        return self._tools

    def show_tool_descriptions(self, tool_description_template: Optional[str] = None) -> str:
        """
        Returns the description of all tools in the toolbox

        Args:
            tool_description_template (`str`, *optional*):
                The template to use to describe the tools. If not provided, the default template will be used.
        """
        return "\n".join(
            [
                get_tool_description_with_args(tool, tool_description_template)
                for tool in self._tools.values()
            ]
        )

    def add_tool(self, tool: Tool):
        """
        Adds a tool to the toolbox

        Args:
            tool (`Tool`):
                The tool to add to the toolbox.
        """
        if tool.name in self._tools:
            raise KeyError(f"Error: tool '{tool.name}' already exists in the toolbox.")
        self._tools[tool.name] = tool

    def remove_tool(self, tool_name: str):
        """
        Removes a tool from the toolbox

        Args:
            tool_name (`str`):
                The tool to remove from the toolbox.
        """
        if tool_name not in self._tools:
            raise KeyError(
                f"Error: tool {tool_name} not found in toolbox for removal, should be instead one of {list(self._tools.keys())}."
            )
        del self._tools[tool_name]

    def update_tool(self, tool: Tool):
        """
        Updates a tool in the toolbox according to its name.

        Args:
            tool (`Tool`):
                The tool to update to the toolbox.
        """
        if tool.name not in self._tools:
            raise KeyError(
                f"Error: tool {tool.name} not found in toolbox for update, should be instead one of {list(self._tools.keys())}."
            )
        self._tools[tool.name] = tool

    def clear_toolbox(self):
        """Clears the toolbox"""
        self._tools = {}

    # def _load_tools_if_needed(self):
    #     for name, tool in self._tools.items():
    #         if not isinstance(tool, Tool):
    #             task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id
    #             self._tools[name] = load_tool(task_or_repo_id)

    def __repr__(self):
        toolbox_description = "Toolbox contents:\n"
        for tool in self._tools.values():
            toolbox_description += f"\t{tool.name}: {tool.description}\n"
        return toolbox_description

__all__ = ["AUTHORIZED_TYPES", "Tool", "tool", "load_tool", "launch_gradio_demo", "Toolbox"]