get-weather / types.py
m-ric's picture
m-ric HF staff
Upload tool
9bb5689 verified
raw
history blame
8.56 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pathlib
import tempfile
import uuid
import numpy as np
from transformers.utils import (
is_soundfile_availble,
is_torch_available,
is_vision_available,
)
import logging
logger = logging.getLogger(__name__)
if is_vision_available():
from PIL import Image
from PIL.Image import Image as ImageType
else:
ImageType = object
if is_torch_available():
import torch
from torch import Tensor
else:
Tensor = object
if is_soundfile_availble():
import soundfile as sf
class AgentType:
"""
Abstract class to be reimplemented to define types that can be returned by agents.
These objects serve three purposes:
- They behave as they were the type they're meant to be, e.g., a string for text, a PIL.Image for images
- They can be stringified: str(object) in order to return a string defining the object
- They should be displayed correctly in ipython notebooks/colab/jupyter
"""
def __init__(self, value):
self._value = value
def __str__(self):
return self.to_string()
def to_raw(self):
logger.error(
"This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable"
)
return self._value
def to_string(self) -> str:
logger.error(
"This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable"
)
return str(self._value)
class AgentText(AgentType, str):
"""
Text type returned by the agent. Behaves as a string.
"""
def to_raw(self):
return self._value
def to_string(self):
return str(self._value)
class AgentImage(AgentType, ImageType):
"""
Image type returned by the agent. Behaves as a PIL.Image.
"""
def __init__(self, value):
AgentType.__init__(self, value)
ImageType.__init__(self)
if not is_vision_available():
raise ImportError("PIL must be installed in order to handle images.")
self._path = None
self._raw = None
self._tensor = None
if isinstance(value, ImageType):
self._raw = value
elif isinstance(value, (str, pathlib.Path)):
self._path = value
elif isinstance(value, torch.Tensor):
self._tensor = value
elif isinstance(value, np.ndarray):
self._tensor = torch.from_numpy(value)
else:
raise TypeError(
f"Unsupported type for {self.__class__.__name__}: {type(value)}"
)
def _ipython_display_(self, include=None, exclude=None):
"""
Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...)
"""
from IPython.display import Image, display
display(Image(self.to_string()))
def to_raw(self):
"""
Returns the "raw" version of that object. In the case of an AgentImage, it is a PIL.Image.
"""
if self._raw is not None:
return self._raw
if self._path is not None:
self._raw = Image.open(self._path)
return self._raw
if self._tensor is not None:
array = self._tensor.cpu().detach().numpy()
return Image.fromarray((255 - array * 255).astype(np.uint8))
def to_string(self):
"""
Returns the stringified version of that object. In the case of an AgentImage, it is a path to the serialized
version of the image.
"""
if self._path is not None:
return self._path
if self._raw is not None:
directory = tempfile.mkdtemp()
self._path = os.path.join(directory, str(uuid.uuid4()) + ".png")
self._raw.save(self._path, format="png")
return self._path
if self._tensor is not None:
array = self._tensor.cpu().detach().numpy()
# There is likely simpler than load into image into save
img = Image.fromarray((255 - array * 255).astype(np.uint8))
directory = tempfile.mkdtemp()
self._path = os.path.join(directory, str(uuid.uuid4()) + ".png")
img.save(self._path, format="png")
return self._path
def save(self, output_bytes, format: str = None, **params):
"""
Saves the image to a file.
Args:
output_bytes (bytes): The output bytes to save the image to.
format (str): The format to use for the output image. The format is the same as in PIL.Image.save.
**params: Additional parameters to pass to PIL.Image.save.
"""
img = self.to_raw()
img.save(output_bytes, format=format, **params)
class AgentAudio(AgentType, str):
"""
Audio type returned by the agent.
"""
def __init__(self, value, samplerate=16_000):
super().__init__(value)
if not is_soundfile_availble():
raise ImportError("soundfile must be installed in order to handle audio.")
self._path = None
self._tensor = None
self.samplerate = samplerate
if isinstance(value, (str, pathlib.Path)):
self._path = value
elif is_torch_available() and isinstance(value, torch.Tensor):
self._tensor = value
elif isinstance(value, tuple):
self.samplerate = value[0]
if isinstance(value[1], np.ndarray):
self._tensor = torch.from_numpy(value[1])
else:
self._tensor = torch.tensor(value[1])
else:
raise ValueError(f"Unsupported audio type: {type(value)}")
def _ipython_display_(self, include=None, exclude=None):
"""
Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...)
"""
from IPython.display import Audio, display
display(Audio(self.to_string(), rate=self.samplerate))
def to_raw(self):
"""
Returns the "raw" version of that object. It is a `torch.Tensor` object.
"""
if self._tensor is not None:
return self._tensor
if self._path is not None:
tensor, self.samplerate = sf.read(self._path)
self._tensor = torch.tensor(tensor)
return self._tensor
def to_string(self):
"""
Returns the stringified version of that object. In the case of an AgentAudio, it is a path to the serialized
version of the audio.
"""
if self._path is not None:
return self._path
if self._tensor is not None:
directory = tempfile.mkdtemp()
self._path = os.path.join(directory, str(uuid.uuid4()) + ".wav")
sf.write(self._path, self._tensor, samplerate=self.samplerate)
return self._path
AGENT_TYPE_MAPPING = {"string": AgentText, "image": AgentImage, "audio": AgentAudio}
INSTANCE_TYPE_MAPPING = {str: AgentText, ImageType: AgentImage}
if is_torch_available():
INSTANCE_TYPE_MAPPING[Tensor] = AgentAudio
def handle_agent_inputs(*args, **kwargs):
args = [(arg.to_raw() if isinstance(arg, AgentType) else arg) for arg in args]
kwargs = {
k: (v.to_raw() if isinstance(v, AgentType) else v) for k, v in kwargs.items()
}
return args, kwargs
def handle_agent_outputs(output, output_type=None):
if output_type in AGENT_TYPE_MAPPING:
# If the class has defined outputs, we can map directly according to the class definition
decoded_outputs = AGENT_TYPE_MAPPING[output_type](output)
return decoded_outputs
else:
# If the class does not have defined output, then we map according to the type
for _k, _v in INSTANCE_TYPE_MAPPING.items():
if isinstance(output, _k):
return _v(output)
return output
__all__ = ["AgentType", "AgentImage", "AgentText", "AgentAudio"]