Spaces:
Runtime error
Runtime error
macadeliccc
commited on
Commit
Β·
933bc05
1
Parent(s):
7f45d73
switch to LCM demo
Browse files- README.md +2 -2
- app.py +132 -48
- requirements.txt +2 -2
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π
|
4 |
colorFrom: indigo
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.1.2
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: LCM-LoRa-SDXL Demo + Papercut
|
3 |
emoji: π
|
4 |
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.1.2
|
8 |
app_file: app.py
|
app.py
CHANGED
@@ -1,68 +1,152 @@
|
|
1 |
import spaces
|
2 |
-
from diffusers import StableDiffusionXLPipeline
|
3 |
-
from diffusers import DiffusionPipeline
|
4 |
-
from pydantic import BaseModel
|
5 |
-
from PIL import Image
|
6 |
import gradio as gr
|
7 |
import torch
|
8 |
-
import
|
|
|
|
|
|
|
9 |
import io
|
10 |
-
import os
|
11 |
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
pipe =
|
15 |
-
"
|
16 |
-
torch_dtype=torch.float16,
|
17 |
-
use_safetensors=True,
|
18 |
-
variant="fp16"
|
19 |
-
)
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
return image_path
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
with gr.Column():
|
45 |
-
gr.Markdown("# Image Generation with SSD-1B")
|
46 |
-
gr.Markdown("Enter a prompt and (optionally) a negative prompt to generate an image.")
|
47 |
-
|
48 |
-
# Input fields for positive and negative prompts
|
49 |
-
with gr.Row():
|
50 |
-
prompt1 = gr.Textbox(label="Enter prompt")
|
51 |
-
negative_prompt = gr.Textbox(label="Enter negative prompt (optional)")
|
52 |
-
|
53 |
-
# Button for generating the image
|
54 |
-
generate_button1 = gr.Button("Generate Image")
|
55 |
|
56 |
-
|
57 |
-
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
demo.launch()
|
|
|
1 |
import spaces
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
5 |
+
from diffusers import AutoPipelineForInpainting, LCMScheduler
|
6 |
+
from diffusers import DiffusionPipeline, LCMScheduler
|
7 |
+
from PIL import Image, ImageEnhance
|
8 |
import io
|
|
|
9 |
|
10 |
+
@spaces.GPU
|
11 |
+
def generate_image(prompt, num_inference_steps, guidance_scale):
|
12 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
+
adapter_id = "latent-consistency/lcm-lora-sdxl"
|
14 |
|
15 |
+
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
16 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
17 |
+
pipe.to("cuda")
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Load and fuse lcm lora
|
20 |
+
pipe.load_lora_weights(adapter_id)
|
21 |
+
pipe.fuse_lora()
|
22 |
|
23 |
+
# Generate the image
|
24 |
+
image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0]
|
25 |
+
|
26 |
+
return image
|
27 |
|
28 |
+
def inpaint_image(prompt, init_image, mask_image, num_inference_steps, guidance_scale):
|
29 |
+
pipe = AutoPipelineForInpainting.from_pretrained(
|
30 |
+
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
variant="fp16",
|
33 |
+
).to("cuda")
|
34 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
35 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
|
36 |
+
pipe.fuse_lora()
|
37 |
|
38 |
+
if init_image is not None:
|
39 |
+
init_image_path = init_image.name # Get the file path
|
40 |
+
init_image = Image.open(init_image_path).resize((1024, 1024))
|
41 |
+
else:
|
42 |
+
raise ValueError("Initial image not provided or invalid")
|
43 |
|
44 |
+
if mask_image is not None:
|
45 |
+
mask_image_path = mask_image.name # Get the file path
|
46 |
+
mask_image = Image.open(mask_image_path).resize((1024, 1024))
|
47 |
+
else:
|
48 |
+
raise ValueError("Mask image not provided or invalid")
|
49 |
|
50 |
+
# Generate the inpainted image
|
51 |
+
generator = torch.manual_seed(42)
|
52 |
+
image = pipe(
|
53 |
+
prompt=prompt,
|
54 |
+
image=init_image,
|
55 |
+
mask_image=mask_image,
|
56 |
+
generator=generator,
|
57 |
+
num_inference_steps=num_inference_steps,
|
58 |
+
guidance_scale=guidance_scale,
|
59 |
+
).images[0]
|
60 |
|
61 |
+
return image
|
|
|
62 |
|
63 |
+
def generate_image_with_adapter(prompt, num_inference_steps, guidance_scale):
|
64 |
+
pipe = DiffusionPipeline.from_pretrained(
|
65 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
66 |
+
variant="fp16",
|
67 |
+
torch_dtype=torch.float16
|
68 |
+
).to("cuda")
|
69 |
|
70 |
+
# set scheduler
|
71 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Load and fuse lcm lora
|
74 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl", adapter_name="lcm")
|
75 |
+
pipe.load_lora_weights("TheLastBen/Papercut_SDXL", weight_name="papercut.safetensors", adapter_name="papercut")
|
76 |
|
77 |
+
# Combine LoRAs
|
78 |
+
pipe.set_adapters(["lcm", "papercut"], adapter_weights=[1.0, 0.8])
|
79 |
+
pipe.fuse_lora()
|
80 |
+
generator = torch.manual_seed(0)
|
81 |
+
# Generate the image
|
82 |
+
image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator).images[0]
|
83 |
+
pipe.unfuse_lora()
|
84 |
+
return image
|
85 |
|
86 |
|
87 |
+
def modify_image(image, brightness, contrast):
|
88 |
+
# Function to modify brightness and contrast
|
89 |
+
image = Image.open(io.BytesIO(image))
|
90 |
+
enhancer = ImageEnhance.Brightness(image)
|
91 |
+
image = enhancer.enhance(brightness)
|
92 |
+
enhancer = ImageEnhance.Contrast(image)
|
93 |
+
image = enhancer.enhance(contrast)
|
94 |
+
return image
|
95 |
+
|
96 |
+
with gr.Blocks(gr.themes.Soft()) as demo:
|
97 |
+
with gr.Row():
|
98 |
+
image_output = gr.Image(label="Generated Image")
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
with gr.Accordion(label="Configuration Options"):
|
102 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k")
|
103 |
+
steps_input = gr.Slider(minimum=1, maximum=10, label="Inference Steps", value=4)
|
104 |
+
guidance_input = gr.Slider(minimum=0, maximum=2, label="Guidance Scale", value=1)
|
105 |
+
generate_button = gr.Button("Generate Image")
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Accordion(label="Papercut Image Generation"):
|
108 |
+
adapter_prompt_input = gr.Textbox(label="Prompt", placeholder="papercut, a cute fox")
|
109 |
+
adapter_steps_input = gr.Slider(minimum=1, maximum=10, label="Inference Steps", value=4)
|
110 |
+
adapter_guidance_input = gr.Slider(minimum=0, maximum=2, label="Guidance Scale", value=1)
|
111 |
+
adapter_generate_button = gr.Button("Generate Image with Adapter")
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Accordion(label="Inpainting"):
|
115 |
+
inpaint_prompt_input = gr.Textbox(label="Prompt for Inpainting", placeholder="a castle on top of a mountain, highly detailed, 8k")
|
116 |
+
init_image_input = gr.File(label="Initial Image")
|
117 |
+
mask_image_input = gr.File(label="Mask Image")
|
118 |
+
inpaint_steps_input = gr.Slider(minimum=1, maximum=10, label="Inference Steps", value=4)
|
119 |
+
inpaint_guidance_input = gr.Slider(minimum=0, maximum=2, label="Guidance Scale", value=1)
|
120 |
+
inpaint_button = gr.Button("Inpaint Image")
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
with gr.Accordion(label="Image Modification (Experimental)"):
|
124 |
+
brightness_slider = gr.Slider(minimum=0.5, maximum=1.5, step=1, label="Brightness")
|
125 |
+
contrast_slider = gr.Slider(minimum=0.5, maximum=1.5, step=1, label="Contrast")
|
126 |
+
modify_button = gr.Button("Modify Image")
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
generate_button.click(
|
131 |
+
generate_image,
|
132 |
+
inputs=[prompt_input, steps_input, guidance_input],
|
133 |
+
outputs=image_output
|
134 |
+
)
|
135 |
+
|
136 |
+
modify_button.click(
|
137 |
+
modify_image,
|
138 |
+
inputs=[image_output, brightness_slider, contrast_slider],
|
139 |
+
outputs=image_output
|
140 |
+
)
|
141 |
+
inpaint_button.click(
|
142 |
+
inpaint_image,
|
143 |
+
inputs=[inpaint_prompt_input, init_image_input, mask_image_input, inpaint_steps_input, inpaint_guidance_input],
|
144 |
+
outputs=image_output
|
145 |
+
)
|
146 |
+
adapter_generate_button.click(
|
147 |
+
generate_image_with_adapter,
|
148 |
+
inputs=[adapter_prompt_input, adapter_steps_input, adapter_guidance_input],
|
149 |
+
outputs=image_output
|
150 |
+
)
|
151 |
+
|
152 |
demo.launch()
|
requirements.txt
CHANGED
@@ -2,9 +2,9 @@ git+https://github.com/huggingface/diffusers.git
|
|
2 |
git+https://github.com/huggingface/transformers.git
|
3 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
4 |
torch
|
5 |
-
|
6 |
pydantic
|
7 |
Pillow
|
8 |
accelerate
|
9 |
spaces
|
10 |
-
invisible_watermark
|
|
|
2 |
git+https://github.com/huggingface/transformers.git
|
3 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
4 |
torch
|
5 |
+
peft
|
6 |
pydantic
|
7 |
Pillow
|
8 |
accelerate
|
9 |
spaces
|
10 |
+
invisible_watermark
|