5428-p-llamaindexRAG / data /flux /demo_st_fill.py
maccmaccmaccc's picture
Upload 45 files
2bf74f8 verified
import os
import re
import tempfile
import time
from glob import iglob
from io import BytesIO
import numpy as np
import streamlit as st
import torch
from einops import rearrange
from PIL import ExifTags, Image
from st_keyup import st_keyup
from streamlit_drawable_canvas import st_canvas
from transformers import pipeline
from flux.sampling import denoise, get_noise, get_schedule, prepare_fill, unpack
from flux.util import embed_watermark, load_ae, load_clip, load_flow_model, load_t5
NSFW_THRESHOLD = 0.85
def add_border_and_mask(image, zoom_all=1.0, zoom_left=0, zoom_right=0, zoom_up=0, zoom_down=0, overlap=0):
"""Adds a black border around the image with individual side control and mask overlap"""
orig_width, orig_height = image.size
# Calculate padding for each side (in pixels)
left_pad = int(orig_width * zoom_left)
right_pad = int(orig_width * zoom_right)
top_pad = int(orig_height * zoom_up)
bottom_pad = int(orig_height * zoom_down)
# Calculate overlap in pixels
overlap_left = int(orig_width * overlap)
overlap_right = int(orig_width * overlap)
overlap_top = int(orig_height * overlap)
overlap_bottom = int(orig_height * overlap)
# If using the all-sides zoom, add it to each side
if zoom_all > 1.0:
extra_each_side = (zoom_all - 1.0) / 2
left_pad += int(orig_width * extra_each_side)
right_pad += int(orig_width * extra_each_side)
top_pad += int(orig_height * extra_each_side)
bottom_pad += int(orig_height * extra_each_side)
# Calculate new dimensions (ensure they're multiples of 32)
new_width = 32 * round((orig_width + left_pad + right_pad) / 32)
new_height = 32 * round((orig_height + top_pad + bottom_pad) / 32)
# Create new image with black border
bordered_image = Image.new("RGB", (new_width, new_height), (0, 0, 0))
# Paste original image in position
paste_x = left_pad
paste_y = top_pad
bordered_image.paste(image, (paste_x, paste_y))
# Create mask (white where the border is, black where the original image was)
mask = Image.new("L", (new_width, new_height), 255) # White background
# Paste black rectangle with overlap adjustment
mask.paste(
0,
(
paste_x + overlap_left, # Left edge moves right
paste_y + overlap_top, # Top edge moves down
paste_x + orig_width - overlap_right, # Right edge moves left
paste_y + orig_height - overlap_bottom, # Bottom edge moves up
),
)
return bordered_image, mask
@st.cache_resource()
def get_models(name: str, device: torch.device, offload: bool):
t5 = load_t5(device, max_length=128)
clip = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
ae = load_ae(name, device="cpu" if offload else device)
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
return model, ae, t5, clip, nsfw_classifier
def resize(img: Image.Image, min_mp: float = 0.5, max_mp: float = 2.0) -> Image.Image:
width, height = img.size
mp = (width * height) / 1_000_000 # Current megapixels
if min_mp <= mp <= max_mp:
# Even if MP is in range, ensure dimensions are multiples of 32
new_width = int(32 * round(width / 32))
new_height = int(32 * round(height / 32))
if new_width != width or new_height != height:
return img.resize((new_width, new_height), Image.Resampling.LANCZOS)
return img
# Calculate scaling factor
if mp < min_mp:
scale = (min_mp / mp) ** 0.5
else: # mp > max_mp
scale = (max_mp / mp) ** 0.5
new_width = int(32 * round(width * scale / 32))
new_height = int(32 * round(height * scale / 32))
return img.resize((new_width, new_height), Image.Resampling.LANCZOS)
def clear_canvas_state():
"""Clear all canvas-related state"""
keys_to_clear = ["canvas", "last_image_dims"]
for key in keys_to_clear:
if key in st.session_state:
del st.session_state[key]
def set_new_image(img: Image.Image):
"""Safely set a new image and clear relevant state"""
st.session_state["current_image"] = img
clear_canvas_state()
st.rerun()
def downscale_image(img: Image.Image, scale_factor: float) -> Image.Image:
"""Downscale image by a given factor while maintaining 32-pixel multiple dimensions"""
if scale_factor >= 1.0:
return img
width, height = img.size
new_width = int(32 * round(width * scale_factor / 32))
new_height = int(32 * round(height * scale_factor / 32))
# Ensure minimum dimensions
new_width = max(64, new_width) # minimum 64 pixels
new_height = max(64, new_height) # minimum 64 pixels
return img.resize((new_width, new_height), Image.Resampling.LANCZOS)
@torch.inference_mode()
def main(
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
output_dir: str = "output",
):
torch_device = torch.device(device)
st.title("Flux Fill: Inpainting & Outpainting")
# Model selection and loading
name = "flux-dev-fill"
if not st.checkbox("Load model", False):
return
try:
model, ae, t5, clip, nsfw_classifier = get_models(
name,
device=torch_device,
offload=offload,
)
except Exception as e:
st.error(f"Error loading models: {e}")
return
# Mode selection
mode = st.radio("Select Mode", ["Inpainting", "Outpainting"])
# Image handling - either from previous generation or new upload
if "input_image" in st.session_state:
image = st.session_state["input_image"]
del st.session_state["input_image"]
set_new_image(image)
st.write("Continuing from previous result")
else:
uploaded_image = st.file_uploader("Upload image", type=["jpg", "jpeg", "png"])
if uploaded_image is None:
st.warning("Please upload an image")
return
if (
"current_image_name" not in st.session_state
or st.session_state["current_image_name"] != uploaded_image.name
):
try:
image = Image.open(uploaded_image).convert("RGB")
st.session_state["current_image_name"] = uploaded_image.name
set_new_image(image)
except Exception as e:
st.error(f"Error loading image: {e}")
return
else:
image = st.session_state.get("current_image")
if image is None:
st.error("Error: Image state is invalid. Please reupload the image.")
clear_canvas_state()
return
# Add downscale control
with st.expander("Image Size Control"):
current_mp = (image.size[0] * image.size[1]) / 1_000_000
st.write(f"Current image size: {image.size[0]}x{image.size[1]} ({current_mp:.1f}MP)")
scale_factor = st.slider(
"Downscale Factor",
min_value=0.1,
max_value=1.0,
value=1.0,
step=0.1,
help="1.0 = original size, 0.5 = half size, etc.",
)
if scale_factor < 1.0 and st.button("Apply Downscaling"):
image = downscale_image(image, scale_factor)
set_new_image(image)
st.rerun()
# Resize image with validation
try:
original_mp = (image.size[0] * image.size[1]) / 1_000_000
image = resize(image)
width, height = image.size
current_mp = (width * height) / 1_000_000
if width % 32 != 0 or height % 32 != 0:
st.error("Error: Image dimensions must be multiples of 32")
return
st.write(f"Image dimensions: {width}x{height} pixels")
if original_mp != current_mp:
st.write(
f"Image has been resized from {original_mp:.1f}MP to {current_mp:.1f}MP to stay within bounds (0.5MP - 2MP)"
)
except Exception as e:
st.error(f"Error processing image: {e}")
return
if mode == "Outpainting":
# Outpainting controls
zoom_all = st.slider("Zoom Out Amount (All Sides)", min_value=1.0, max_value=3.0, value=1.0, step=0.1)
with st.expander("Advanced Zoom Controls"):
st.info("These controls add additional zoom to specific sides")
col1, col2 = st.columns(2)
with col1:
zoom_left = st.slider("Left", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
zoom_right = st.slider("Right", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
with col2:
zoom_up = st.slider("Up", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
zoom_down = st.slider("Down", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
overlap = st.slider("Overlap", min_value=0.01, max_value=0.25, value=0.01, step=0.01)
# Generate bordered image and mask
image_for_generation, mask = add_border_and_mask(
image,
zoom_all=zoom_all,
zoom_left=zoom_left,
zoom_right=zoom_right,
zoom_up=zoom_up,
zoom_down=zoom_down,
overlap=overlap,
)
width, height = image_for_generation.size
# Show preview
col1, col2 = st.columns(2)
with col1:
st.image(image_for_generation, caption="Image with Border")
with col2:
st.image(mask, caption="Mask (white areas will be generated)")
else: # Inpainting mode
# Canvas setup with dimension tracking
canvas_key = f"canvas_{width}_{height}"
if "last_image_dims" not in st.session_state:
st.session_state.last_image_dims = (width, height)
elif st.session_state.last_image_dims != (width, height):
clear_canvas_state()
st.session_state.last_image_dims = (width, height)
st.rerun()
try:
canvas_result = st_canvas(
fill_color="rgba(255, 255, 255, 0.0)",
stroke_width=st.slider("Brush size", 1, 500, 50),
stroke_color="#fff",
background_image=image,
height=height,
width=width,
drawing_mode="freedraw",
key=canvas_key,
display_toolbar=True,
)
except Exception as e:
st.error(f"Error creating canvas: {e}")
clear_canvas_state()
st.rerun()
return
# Sampling parameters
num_steps = int(st.number_input("Number of steps", min_value=1, value=50))
guidance = float(st.number_input("Guidance", min_value=1.0, value=30.0))
seed_str = st.text_input("Seed")
if seed_str.isdecimal():
seed = int(seed_str)
else:
st.info("No seed set, using random seed")
seed = None
save_samples = st.checkbox("Save samples?", True)
add_sampling_metadata = st.checkbox("Add sampling parameters to metadata?", True)
# Prompt input
prompt = st_keyup("Enter a prompt", value="", debounce=300, key="interactive_text")
# Setup output path
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
idx = len(fns)
if st.button("Generate"):
valid_input = False
if mode == "Inpainting" and canvas_result.image_data is not None:
valid_input = True
# Create mask from canvas
try:
mask = Image.fromarray(canvas_result.image_data)
mask = mask.getchannel("A") # Get alpha channel
mask_array = np.array(mask)
mask_array = (mask_array > 0).astype(np.uint8) * 255
mask = Image.fromarray(mask_array)
image_for_generation = image
except Exception as e:
st.error(f"Error creating mask: {e}")
return
elif mode == "Outpainting":
valid_input = True
# image_for_generation and mask are already set above
if not valid_input:
st.error("Please draw a mask or configure outpainting settings")
return
# Create temporary files
with (
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img,
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_mask,
):
try:
image_for_generation.save(tmp_img.name)
mask.save(tmp_mask.name)
except Exception as e:
st.error(f"Error saving temporary files: {e}")
return
try:
# Generate inpainting/outpainting
rng = torch.Generator(device="cpu")
if seed is None:
seed = rng.seed()
print(f"Generating with seed {seed}:\n{prompt}")
t0 = time.perf_counter()
x = get_noise(
1,
height,
width,
device=torch_device,
dtype=torch.bfloat16,
seed=seed,
)
if offload:
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
inp = prepare_fill(
t5,
clip,
x,
prompt=prompt,
ae=ae,
img_cond_path=tmp_img.name,
mask_path=tmp_mask.name,
)
timesteps = get_schedule(num_steps, inp["img"].shape[1], shift=True)
if offload:
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
x = unpack(x.float(), height, width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s")
# Process and display result
x = x.clamp(-1, 1)
x = embed_watermark(x.float())
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
if nsfw_score < NSFW_THRESHOLD:
buffer = BytesIO()
exif_data = Image.Exif()
exif_data[ExifTags.Base.Software] = "AI generated;inpainting;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = name
if add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = prompt
img.save(buffer, format="jpeg", exif=exif_data, quality=95, subsampling=0)
img_bytes = buffer.getvalue()
if save_samples:
fn = output_name.format(idx=idx)
print(f"Saving {fn}")
with open(fn, "wb") as file:
file.write(img_bytes)
st.session_state["samples"] = {
"prompt": prompt,
"img": img,
"seed": seed,
"bytes": img_bytes,
}
else:
st.warning("Your generated image may contain NSFW content.")
st.session_state["samples"] = None
except Exception as e:
st.error(f"Error during generation: {e}")
return
finally:
# Clean up temporary files
try:
os.unlink(tmp_img.name)
os.unlink(tmp_mask.name)
except Exception as e:
print(f"Error cleaning up temporary files: {e}")
# Display results
samples = st.session_state.get("samples", None)
if samples is not None:
st.image(samples["img"], caption=samples["prompt"])
col1, col2 = st.columns(2)
with col1:
st.download_button(
"Download full-resolution",
samples["bytes"],
file_name="generated.jpg",
mime="image/jpg",
)
with col2:
if st.button("Continue from this image"):
# Store the generated image
new_image = samples["img"]
# Clear ALL canvas state
clear_canvas_state()
if "samples" in st.session_state:
del st.session_state["samples"]
# Set as current image
st.session_state["current_image"] = new_image
st.rerun()
st.write(f"Seed: {samples['seed']}")
if __name__ == "__main__":
st.set_page_config(layout="wide")
main()