|
import asyncio |
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Union |
|
import numpy as np |
|
import array |
|
|
|
from ..utils import logger |
|
from ..base import ( |
|
BaseGraphStorage, |
|
BaseKVStorage, |
|
BaseVectorStorage, |
|
) |
|
|
|
import oracledb |
|
|
|
|
|
class OracleDB: |
|
def __init__(self, config, **kwargs): |
|
self.host = config.get("host", None) |
|
self.port = config.get("port", None) |
|
self.user = config.get("user", None) |
|
self.password = config.get("password", None) |
|
self.dsn = config.get("dsn", None) |
|
self.config_dir = config.get("config_dir", None) |
|
self.wallet_location = config.get("wallet_location", None) |
|
self.wallet_password = config.get("wallet_password", None) |
|
self.workspace = config.get("workspace", None) |
|
self.max = 12 |
|
self.increment = 1 |
|
logger.info(f"Using the label {self.workspace} for Oracle Graph as identifier") |
|
if self.user is None or self.password is None: |
|
raise ValueError("Missing database user or password in addon_params") |
|
|
|
try: |
|
oracledb.defaults.fetch_lobs = False |
|
|
|
self.pool = oracledb.create_pool_async( |
|
user=self.user, |
|
password=self.password, |
|
dsn=self.dsn, |
|
config_dir=self.config_dir, |
|
wallet_location=self.wallet_location, |
|
wallet_password=self.wallet_password, |
|
min=1, |
|
max=self.max, |
|
increment=self.increment, |
|
) |
|
logger.info(f"Connected to Oracle database at {self.dsn}") |
|
except Exception as e: |
|
logger.error(f"Failed to connect to Oracle database at {self.dsn}") |
|
logger.error(f"Oracle database error: {e}") |
|
raise |
|
|
|
def numpy_converter_in(self, value): |
|
"""Convert numpy array to array.array""" |
|
if value.dtype == np.float64: |
|
dtype = "d" |
|
elif value.dtype == np.float32: |
|
dtype = "f" |
|
else: |
|
dtype = "b" |
|
return array.array(dtype, value) |
|
|
|
def input_type_handler(self, cursor, value, arraysize): |
|
"""Set the type handler for the input data""" |
|
if isinstance(value, np.ndarray): |
|
return cursor.var( |
|
oracledb.DB_TYPE_VECTOR, |
|
arraysize=arraysize, |
|
inconverter=self.numpy_converter_in, |
|
) |
|
|
|
def numpy_converter_out(self, value): |
|
"""Convert array.array to numpy array""" |
|
if value.typecode == "b": |
|
dtype = np.int8 |
|
elif value.typecode == "f": |
|
dtype = np.float32 |
|
else: |
|
dtype = np.float64 |
|
return np.array(value, copy=False, dtype=dtype) |
|
|
|
def output_type_handler(self, cursor, metadata): |
|
"""Set the type handler for the output data""" |
|
if metadata.type_code is oracledb.DB_TYPE_VECTOR: |
|
return cursor.var( |
|
metadata.type_code, |
|
arraysize=cursor.arraysize, |
|
outconverter=self.numpy_converter_out, |
|
) |
|
|
|
async def check_tables(self): |
|
for k, v in TABLES.items(): |
|
try: |
|
if k.lower() == "lightrag_graph": |
|
await self.query( |
|
"SELECT id FROM GRAPH_TABLE (lightrag_graph MATCH (a) COLUMNS (a.id)) fetch first row only" |
|
) |
|
else: |
|
await self.query("SELECT 1 FROM {k}".format(k=k)) |
|
except Exception as e: |
|
logger.error(f"Failed to check table {k} in Oracle database") |
|
logger.error(f"Oracle database error: {e}") |
|
try: |
|
|
|
await self.execute(v["ddl"]) |
|
logger.info(f"Created table {k} in Oracle database") |
|
except Exception as e: |
|
logger.error(f"Failed to create table {k} in Oracle database") |
|
logger.error(f"Oracle database error: {e}") |
|
|
|
logger.info("Finished check all tables in Oracle database") |
|
|
|
async def query( |
|
self, sql: str, params: dict = None, multirows: bool = False |
|
) -> Union[dict, None]: |
|
async with self.pool.acquire() as connection: |
|
connection.inputtypehandler = self.input_type_handler |
|
connection.outputtypehandler = self.output_type_handler |
|
with connection.cursor() as cursor: |
|
try: |
|
await cursor.execute(sql, params) |
|
except Exception as e: |
|
logger.error(f"Oracle database error: {e}") |
|
print(sql) |
|
print(params) |
|
raise |
|
columns = [column[0].lower() for column in cursor.description] |
|
if multirows: |
|
rows = await cursor.fetchall() |
|
if rows: |
|
data = [dict(zip(columns, row)) for row in rows] |
|
else: |
|
data = [] |
|
else: |
|
row = await cursor.fetchone() |
|
if row: |
|
data = dict(zip(columns, row)) |
|
else: |
|
data = None |
|
return data |
|
|
|
async def execute(self, sql: str, data: list | dict = None): |
|
|
|
try: |
|
async with self.pool.acquire() as connection: |
|
connection.inputtypehandler = self.input_type_handler |
|
connection.outputtypehandler = self.output_type_handler |
|
with connection.cursor() as cursor: |
|
if data is None: |
|
await cursor.execute(sql) |
|
else: |
|
|
|
|
|
await cursor.execute(sql, data) |
|
await connection.commit() |
|
except Exception as e: |
|
logger.error(f"Oracle database error: {e}") |
|
print(sql) |
|
print(data) |
|
raise |
|
|
|
|
|
@dataclass |
|
class OracleKVStorage(BaseKVStorage): |
|
|
|
def __post_init__(self): |
|
self._data = {} |
|
self._max_batch_size = self.global_config["embedding_batch_num"] |
|
|
|
|
|
|
|
async def get_by_id(self, id: str) -> Union[dict, None]: |
|
"""根据 id 获取 doc_full 数据.""" |
|
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace] |
|
params = {"workspace": self.db.workspace, "id": id} |
|
|
|
res = await self.db.query(SQL, params) |
|
if res: |
|
data = res |
|
|
|
return data |
|
else: |
|
return None |
|
|
|
|
|
async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict], None]: |
|
"""根据 id 获取 doc_chunks 数据""" |
|
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format( |
|
ids=",".join([f"'{id}'" for id in ids]) |
|
) |
|
params = {"workspace": self.db.workspace} |
|
|
|
|
|
res = await self.db.query(SQL, params, multirows=True) |
|
if res: |
|
data = res |
|
|
|
return data |
|
else: |
|
return None |
|
|
|
async def filter_keys(self, keys: list[str]) -> set[str]: |
|
"""过滤掉重复内容""" |
|
SQL = SQL_TEMPLATES["filter_keys"].format( |
|
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys]) |
|
) |
|
params = {"workspace": self.db.workspace} |
|
try: |
|
await self.db.query(SQL, params) |
|
except Exception as e: |
|
logger.error(f"Oracle database error: {e}") |
|
print(SQL) |
|
print(params) |
|
res = await self.db.query(SQL, params, multirows=True) |
|
data = None |
|
if res: |
|
exist_keys = [key["id"] for key in res] |
|
data = set([s for s in keys if s not in exist_keys]) |
|
else: |
|
exist_keys = [] |
|
data = set([s for s in keys if s not in exist_keys]) |
|
return data |
|
|
|
|
|
async def upsert(self, data: dict[str, dict]): |
|
left_data = {k: v for k, v in data.items() if k not in self._data} |
|
self._data.update(left_data) |
|
|
|
|
|
if self.namespace == "text_chunks": |
|
list_data = [ |
|
{ |
|
"__id__": k, |
|
**{k1: v1 for k1, v1 in v.items()}, |
|
} |
|
for k, v in data.items() |
|
] |
|
contents = [v["content"] for v in data.values()] |
|
batches = [ |
|
contents[i : i + self._max_batch_size] |
|
for i in range(0, len(contents), self._max_batch_size) |
|
] |
|
embeddings_list = await asyncio.gather( |
|
*[self.embedding_func(batch) for batch in batches] |
|
) |
|
embeddings = np.concatenate(embeddings_list) |
|
for i, d in enumerate(list_data): |
|
d["__vector__"] = embeddings[i] |
|
|
|
for item in list_data: |
|
merge_sql = SQL_TEMPLATES["merge_chunk"] |
|
data = { |
|
"check_id": item["__id__"], |
|
"id": item["__id__"], |
|
"content": item["content"], |
|
"workspace": self.db.workspace, |
|
"tokens": item["tokens"], |
|
"chunk_order_index": item["chunk_order_index"], |
|
"full_doc_id": item["full_doc_id"], |
|
"content_vector": item["__vector__"], |
|
} |
|
|
|
await self.db.execute(merge_sql, data) |
|
|
|
if self.namespace == "full_docs": |
|
for k, v in self._data.items(): |
|
|
|
merge_sql = SQL_TEMPLATES["merge_doc_full"] |
|
data = { |
|
"check_id": k, |
|
"id": k, |
|
"content": v["content"], |
|
"workspace": self.db.workspace, |
|
} |
|
|
|
await self.db.execute(merge_sql, data) |
|
return left_data |
|
|
|
async def index_done_callback(self): |
|
if self.namespace in ["full_docs", "text_chunks"]: |
|
logger.info("full doc and chunk data had been saved into oracle db!") |
|
|
|
|
|
@dataclass |
|
class OracleVectorDBStorage(BaseVectorStorage): |
|
cosine_better_than_threshold: float = 0.2 |
|
|
|
def __post_init__(self): |
|
pass |
|
|
|
async def upsert(self, data: dict[str, dict]): |
|
"""向向量数据库中插入数据""" |
|
pass |
|
|
|
async def index_done_callback(self): |
|
pass |
|
|
|
|
|
async def query(self, query: str, top_k=5) -> Union[dict, list[dict]]: |
|
"""从向量数据库中查询数据""" |
|
embeddings = await self.embedding_func([query]) |
|
embedding = embeddings[0] |
|
|
|
dtype = str(embedding.dtype).upper() |
|
dimension = embedding.shape[0] |
|
embedding_string = "[" + ", ".join(map(str, embedding.tolist())) + "]" |
|
|
|
SQL = SQL_TEMPLATES[self.namespace].format(dimension=dimension, dtype=dtype) |
|
params = { |
|
"embedding_string": embedding_string, |
|
"workspace": self.db.workspace, |
|
"top_k": top_k, |
|
"better_than_threshold": self.cosine_better_than_threshold, |
|
} |
|
|
|
results = await self.db.query(SQL, params=params, multirows=True) |
|
|
|
return results |
|
|
|
|
|
@dataclass |
|
class OracleGraphStorage(BaseGraphStorage): |
|
"""基于Oracle的图存储模块""" |
|
|
|
def __post_init__(self): |
|
"""从graphml文件加载图""" |
|
self._max_batch_size = self.global_config["embedding_batch_num"] |
|
|
|
|
|
|
|
async def upsert_node(self, node_id: str, node_data: dict[str, str]): |
|
"""插入或更新节点""" |
|
|
|
entity_name = node_id |
|
entity_type = node_data["entity_type"] |
|
description = node_data["description"] |
|
source_id = node_data["source_id"] |
|
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}") |
|
|
|
content = entity_name + description |
|
contents = [content] |
|
batches = [ |
|
contents[i : i + self._max_batch_size] |
|
for i in range(0, len(contents), self._max_batch_size) |
|
] |
|
embeddings_list = await asyncio.gather( |
|
*[self.embedding_func(batch) for batch in batches] |
|
) |
|
embeddings = np.concatenate(embeddings_list) |
|
content_vector = embeddings[0] |
|
merge_sql = SQL_TEMPLATES["merge_node"] |
|
data = { |
|
"workspace": self.db.workspace, |
|
"name": entity_name, |
|
"entity_type": entity_type, |
|
"description": description, |
|
"source_chunk_id": source_id, |
|
"content": content, |
|
"content_vector": content_vector, |
|
} |
|
|
|
await self.db.execute(merge_sql, data) |
|
|
|
|
|
async def upsert_edge( |
|
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str] |
|
): |
|
"""插入或更新边""" |
|
|
|
source_name = source_node_id |
|
target_name = target_node_id |
|
weight = edge_data["weight"] |
|
keywords = edge_data["keywords"] |
|
description = edge_data["description"] |
|
source_chunk_id = edge_data["source_id"] |
|
logger.debug( |
|
f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}" |
|
) |
|
|
|
content = keywords + source_name + target_name + description |
|
contents = [content] |
|
batches = [ |
|
contents[i : i + self._max_batch_size] |
|
for i in range(0, len(contents), self._max_batch_size) |
|
] |
|
embeddings_list = await asyncio.gather( |
|
*[self.embedding_func(batch) for batch in batches] |
|
) |
|
embeddings = np.concatenate(embeddings_list) |
|
content_vector = embeddings[0] |
|
merge_sql = SQL_TEMPLATES["merge_edge"] |
|
data = { |
|
"workspace": self.db.workspace, |
|
"source_name": source_name, |
|
"target_name": target_name, |
|
"weight": weight, |
|
"keywords": keywords, |
|
"description": description, |
|
"source_chunk_id": source_chunk_id, |
|
"content": content, |
|
"content_vector": content_vector, |
|
} |
|
|
|
await self.db.execute(merge_sql, data) |
|
|
|
|
|
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]: |
|
"""为节点生成向量""" |
|
if algorithm not in self._node_embed_algorithms: |
|
raise ValueError(f"Node embedding algorithm {algorithm} not supported") |
|
return await self._node_embed_algorithms[algorithm]() |
|
|
|
async def _node2vec_embed(self): |
|
"""为节点生成向量""" |
|
from graspologic import embed |
|
|
|
embeddings, nodes = embed.node2vec_embed( |
|
self._graph, |
|
**self.config["node2vec_params"], |
|
) |
|
|
|
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes] |
|
return embeddings, nodes_ids |
|
|
|
async def index_done_callback(self): |
|
"""写入graphhml图文件""" |
|
logger.info( |
|
"Node and edge data had been saved into oracle db already, so nothing to do here!" |
|
) |
|
|
|
|
|
async def has_node(self, node_id: str) -> bool: |
|
"""根据节点id检查节点是否存在""" |
|
SQL = SQL_TEMPLATES["has_node"] |
|
params = {"workspace": self.db.workspace, "node_id": node_id} |
|
|
|
|
|
res = await self.db.query(SQL, params) |
|
if res: |
|
|
|
return True |
|
else: |
|
|
|
return False |
|
|
|
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool: |
|
"""根据源和目标节点id检查边是否存在""" |
|
SQL = SQL_TEMPLATES["has_edge"] |
|
params = { |
|
"workspace": self.db.workspace, |
|
"source_node_id": source_node_id, |
|
"target_node_id": target_node_id, |
|
} |
|
|
|
res = await self.db.query(SQL, params) |
|
if res: |
|
|
|
return True |
|
else: |
|
|
|
return False |
|
|
|
async def node_degree(self, node_id: str) -> int: |
|
"""根据节点id获取节点的度""" |
|
SQL = SQL_TEMPLATES["node_degree"] |
|
params = {"workspace": self.db.workspace, "node_id": node_id} |
|
|
|
res = await self.db.query(SQL, params) |
|
if res: |
|
|
|
return res["degree"] |
|
else: |
|
|
|
return 0 |
|
|
|
async def edge_degree(self, src_id: str, tgt_id: str) -> int: |
|
"""根据源和目标节点id获取边的度""" |
|
degree = await self.node_degree(src_id) + await self.node_degree(tgt_id) |
|
|
|
return degree |
|
|
|
async def get_node(self, node_id: str) -> Union[dict, None]: |
|
"""根据节点id获取节点数据""" |
|
SQL = SQL_TEMPLATES["get_node"] |
|
params = {"workspace": self.db.workspace, "node_id": node_id} |
|
|
|
|
|
res = await self.db.query(SQL, params) |
|
if res: |
|
|
|
return res |
|
else: |
|
|
|
return None |
|
|
|
async def get_edge( |
|
self, source_node_id: str, target_node_id: str |
|
) -> Union[dict, None]: |
|
"""根据源和目标节点id获取边""" |
|
SQL = SQL_TEMPLATES["get_edge"] |
|
params = { |
|
"workspace": self.db.workspace, |
|
"source_node_id": source_node_id, |
|
"target_node_id": target_node_id, |
|
} |
|
res = await self.db.query(SQL, params) |
|
if res: |
|
|
|
return res |
|
else: |
|
|
|
return None |
|
|
|
async def get_node_edges(self, source_node_id: str): |
|
"""根据节点id获取节点的所有边""" |
|
if await self.has_node(source_node_id): |
|
SQL = SQL_TEMPLATES["get_node_edges"] |
|
params = {"workspace": self.db.workspace, "source_node_id": source_node_id} |
|
res = await self.db.query(sql=SQL, params=params, multirows=True) |
|
if res: |
|
data = [(i["source_name"], i["target_name"]) for i in res] |
|
|
|
return data |
|
else: |
|
|
|
return [] |
|
|
|
async def get_all_nodes(self, limit: int): |
|
"""查询所有节点""" |
|
SQL = SQL_TEMPLATES["get_all_nodes"] |
|
params = {"workspace": self.db.workspace, "limit": str(limit)} |
|
res = await self.db.query(sql=SQL, params=params, multirows=True) |
|
if res: |
|
return res |
|
|
|
async def get_all_edges(self, limit: int): |
|
"""查询所有边""" |
|
SQL = SQL_TEMPLATES["get_all_edges"] |
|
params = {"workspace": self.db.workspace, "limit": str(limit)} |
|
res = await self.db.query(sql=SQL, params=params, multirows=True) |
|
if res: |
|
return res |
|
|
|
|
|
N_T = { |
|
"full_docs": "LIGHTRAG_DOC_FULL", |
|
"text_chunks": "LIGHTRAG_DOC_CHUNKS", |
|
"chunks": "LIGHTRAG_DOC_CHUNKS", |
|
"entities": "LIGHTRAG_GRAPH_NODES", |
|
"relationships": "LIGHTRAG_GRAPH_EDGES", |
|
} |
|
|
|
TABLES = { |
|
"LIGHTRAG_DOC_FULL": { |
|
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL ( |
|
id varchar(256)PRIMARY KEY, |
|
workspace varchar(1024), |
|
doc_name varchar(1024), |
|
content CLOB, |
|
meta JSON, |
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP, |
|
updatetime TIMESTAMP DEFAULT NULL |
|
)""" |
|
}, |
|
"LIGHTRAG_DOC_CHUNKS": { |
|
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS ( |
|
id varchar(256) PRIMARY KEY, |
|
workspace varchar(1024), |
|
full_doc_id varchar(256), |
|
chunk_order_index NUMBER, |
|
tokens NUMBER, |
|
content CLOB, |
|
content_vector VECTOR, |
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP, |
|
updatetime TIMESTAMP DEFAULT NULL |
|
)""" |
|
}, |
|
"LIGHTRAG_GRAPH_NODES": { |
|
"ddl": """CREATE TABLE LIGHTRAG_GRAPH_NODES ( |
|
id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY, |
|
workspace varchar(1024), |
|
name varchar(2048), |
|
entity_type varchar(1024), |
|
description CLOB, |
|
source_chunk_id varchar(256), |
|
content CLOB, |
|
content_vector VECTOR, |
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP, |
|
updatetime TIMESTAMP DEFAULT NULL |
|
)""" |
|
}, |
|
"LIGHTRAG_GRAPH_EDGES": { |
|
"ddl": """CREATE TABLE LIGHTRAG_GRAPH_EDGES ( |
|
id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY, |
|
workspace varchar(1024), |
|
source_name varchar(2048), |
|
target_name varchar(2048), |
|
weight NUMBER, |
|
keywords CLOB, |
|
description CLOB, |
|
source_chunk_id varchar(256), |
|
content CLOB, |
|
content_vector VECTOR, |
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP, |
|
updatetime TIMESTAMP DEFAULT NULL |
|
)""" |
|
}, |
|
"LIGHTRAG_LLM_CACHE": { |
|
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE ( |
|
id varchar(256) PRIMARY KEY, |
|
send clob, |
|
return clob, |
|
model varchar(1024), |
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP, |
|
updatetime TIMESTAMP DEFAULT NULL |
|
)""" |
|
}, |
|
"LIGHTRAG_GRAPH": { |
|
"ddl": """CREATE OR REPLACE PROPERTY GRAPH lightrag_graph |
|
VERTEX TABLES ( |
|
lightrag_graph_nodes KEY (id) |
|
LABEL entity |
|
PROPERTIES (id,workspace,name) -- ,entity_type,description,source_chunk_id) |
|
) |
|
EDGE TABLES ( |
|
lightrag_graph_edges KEY (id) |
|
SOURCE KEY (source_name) REFERENCES lightrag_graph_nodes(name) |
|
DESTINATION KEY (target_name) REFERENCES lightrag_graph_nodes(name) |
|
LABEL has_relation |
|
PROPERTIES (id,workspace,source_name,target_name) -- ,weight, keywords,description,source_chunk_id) |
|
) OPTIONS(ALLOW MIXED PROPERTY TYPES)""" |
|
}, |
|
} |
|
|
|
|
|
SQL_TEMPLATES = { |
|
|
|
"get_by_id_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID=:id", |
|
"get_by_id_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID=:id", |
|
"get_by_ids_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID in ({ids})", |
|
"get_by_ids_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID in ({ids})", |
|
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})", |
|
"merge_doc_full": """ MERGE INTO LIGHTRAG_DOC_FULL a |
|
USING DUAL |
|
ON (a.id = :check_id) |
|
WHEN NOT MATCHED THEN |
|
INSERT(id,content,workspace) values(:id,:content,:workspace) |
|
""", |
|
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS a |
|
USING DUAL |
|
ON (a.id = :check_id) |
|
WHEN NOT MATCHED THEN |
|
INSERT(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector) |
|
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector) """, |
|
|
|
"entities": """SELECT name as entity_name FROM |
|
(SELECT id,name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance |
|
FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace) |
|
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""", |
|
"relationships": """SELECT source_name as src_id, target_name as tgt_id FROM |
|
(SELECT id,source_name,target_name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance |
|
FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace) |
|
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""", |
|
"chunks": """SELECT id FROM |
|
(SELECT id,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance |
|
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=:workspace) |
|
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""", |
|
|
|
"has_node": """SELECT * FROM GRAPH_TABLE (lightrag_graph |
|
MATCH (a) |
|
WHERE a.workspace=:workspace AND a.name=:node_id |
|
COLUMNS (a.name))""", |
|
"has_edge": """SELECT * FROM GRAPH_TABLE (lightrag_graph |
|
MATCH (a) -[e]-> (b) |
|
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace |
|
AND a.name=:source_node_id AND b.name=:target_node_id |
|
COLUMNS (e.source_name,e.target_name) )""", |
|
"node_degree": """SELECT count(1) as degree FROM GRAPH_TABLE (lightrag_graph |
|
MATCH (a)-[e]->(b) |
|
WHERE a.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace |
|
AND a.name=:node_id or b.name = :node_id |
|
COLUMNS (a.name))""", |
|
"get_node": """SELECT t1.name,t2.entity_type,t2.source_chunk_id as source_id,NVL(t2.description,'') AS description |
|
FROM GRAPH_TABLE (lightrag_graph |
|
MATCH (a) |
|
WHERE a.workspace=:workspace AND a.name=:node_id |
|
COLUMNS (a.name) |
|
) t1 JOIN LIGHTRAG_GRAPH_NODES t2 on t1.name=t2.name |
|
WHERE t2.workspace=:workspace""", |
|
"get_edge": """SELECT t1.source_id,t2.weight,t2.source_chunk_id as source_id,t2.keywords, |
|
NVL(t2.description,'') AS description,NVL(t2.KEYWORDS,'') AS keywords |
|
FROM GRAPH_TABLE (lightrag_graph |
|
MATCH (a)-[e]->(b) |
|
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace |
|
AND a.name=:source_node_id and b.name = :target_node_id |
|
COLUMNS (e.id,a.name as source_id) |
|
) t1 JOIN LIGHTRAG_GRAPH_EDGES t2 on t1.id=t2.id""", |
|
"get_node_edges": """SELECT source_name,target_name |
|
FROM GRAPH_TABLE (lightrag_graph |
|
MATCH (a)-[e]->(b) |
|
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace |
|
AND a.name=:source_node_id |
|
COLUMNS (a.name as source_name,b.name as target_name))""", |
|
"merge_node": """MERGE INTO LIGHTRAG_GRAPH_NODES a |
|
USING DUAL |
|
ON (a.workspace = :workspace and a.name=:name and a.source_chunk_id=:source_chunk_id) |
|
WHEN NOT MATCHED THEN |
|
INSERT(workspace,name,entity_type,description,source_chunk_id,content,content_vector) |
|
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector) """, |
|
"merge_edge": """MERGE INTO LIGHTRAG_GRAPH_EDGES a |
|
USING DUAL |
|
ON (a.workspace = :workspace and a.source_name=:source_name and a.target_name=:target_name and a.source_chunk_id=:source_chunk_id) |
|
WHEN NOT MATCHED THEN |
|
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector) |
|
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector) """, |
|
"get_all_nodes": """SELECT t1.name as id,t1.entity_type as label,t1.DESCRIPTION,t2.content |
|
FROM LIGHTRAG_GRAPH_NODES t1 |
|
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id |
|
WHERE t1.workspace=:workspace |
|
order by t1.CREATETIME DESC |
|
fetch first :limit rows only |
|
""", |
|
"get_all_edges": """SELECT t1.id,t1.keywords as label,t1.keywords, t1.source_name as source, t1.target_name as target, |
|
t1.weight,t1.DESCRIPTION,t2.content |
|
FROM LIGHTRAG_GRAPH_EDGES t1 |
|
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id |
|
WHERE t1.workspace=:workspace |
|
order by t1.CREATETIME DESC |
|
fetch first :limit rows only""", |
|
} |
|
|