|
import asyncio |
|
import json |
|
import re |
|
from typing import Union |
|
from collections import Counter, defaultdict |
|
import warnings |
|
from .utils import ( |
|
logger, |
|
clean_str, |
|
compute_mdhash_id, |
|
decode_tokens_by_tiktoken, |
|
encode_string_by_tiktoken, |
|
is_float_regex, |
|
list_of_list_to_csv, |
|
pack_user_ass_to_openai_messages, |
|
split_string_by_multi_markers, |
|
truncate_list_by_token_size, |
|
process_combine_contexts, |
|
locate_json_string_body_from_string, |
|
) |
|
from .base import ( |
|
BaseGraphStorage, |
|
BaseKVStorage, |
|
BaseVectorStorage, |
|
TextChunkSchema, |
|
QueryParam, |
|
) |
|
from .prompt import GRAPH_FIELD_SEP, PROMPTS |
|
|
|
|
|
def chunking_by_token_size( |
|
content: str, overlap_token_size=128, max_token_size=1024, tiktoken_model="gpt-4o" |
|
): |
|
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model) |
|
results = [] |
|
for index, start in enumerate( |
|
range(0, len(tokens), max_token_size - overlap_token_size) |
|
): |
|
chunk_content = decode_tokens_by_tiktoken( |
|
tokens[start : start + max_token_size], model_name=tiktoken_model |
|
) |
|
results.append( |
|
{ |
|
"tokens": min(max_token_size, len(tokens) - start), |
|
"content": chunk_content.strip(), |
|
"chunk_order_index": index, |
|
} |
|
) |
|
return results |
|
|
|
|
|
async def _handle_entity_relation_summary( |
|
entity_or_relation_name: str, |
|
description: str, |
|
global_config: dict, |
|
) -> str: |
|
use_llm_func: callable = global_config["llm_model_func"] |
|
llm_max_tokens = global_config["llm_model_max_token_size"] |
|
tiktoken_model_name = global_config["tiktoken_model_name"] |
|
summary_max_tokens = global_config["entity_summary_to_max_tokens"] |
|
|
|
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name) |
|
if len(tokens) < summary_max_tokens: |
|
return description |
|
prompt_template = PROMPTS["summarize_entity_descriptions"] |
|
use_description = decode_tokens_by_tiktoken( |
|
tokens[:llm_max_tokens], model_name=tiktoken_model_name |
|
) |
|
context_base = dict( |
|
entity_name=entity_or_relation_name, |
|
description_list=use_description.split(GRAPH_FIELD_SEP), |
|
) |
|
use_prompt = prompt_template.format(**context_base) |
|
logger.debug(f"Trigger summary: {entity_or_relation_name}") |
|
summary = await use_llm_func(use_prompt, max_tokens=summary_max_tokens) |
|
return summary |
|
|
|
|
|
async def _handle_single_entity_extraction( |
|
record_attributes: list[str], |
|
chunk_key: str, |
|
): |
|
if len(record_attributes) < 4 or record_attributes[0] != '"entity"': |
|
return None |
|
|
|
entity_name = clean_str(record_attributes[1].upper()) |
|
if not entity_name.strip(): |
|
return None |
|
entity_type = clean_str(record_attributes[2].upper()) |
|
entity_description = clean_str(record_attributes[3]) |
|
entity_source_id = chunk_key |
|
return dict( |
|
entity_name=entity_name, |
|
entity_type=entity_type, |
|
description=entity_description, |
|
source_id=entity_source_id, |
|
) |
|
|
|
|
|
async def _handle_single_relationship_extraction( |
|
record_attributes: list[str], |
|
chunk_key: str, |
|
): |
|
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"': |
|
return None |
|
|
|
source = clean_str(record_attributes[1].upper()) |
|
target = clean_str(record_attributes[2].upper()) |
|
edge_description = clean_str(record_attributes[3]) |
|
|
|
edge_keywords = clean_str(record_attributes[4]) |
|
edge_source_id = chunk_key |
|
weight = ( |
|
float(record_attributes[-1]) if is_float_regex(record_attributes[-1]) else 1.0 |
|
) |
|
return dict( |
|
src_id=source, |
|
tgt_id=target, |
|
weight=weight, |
|
description=edge_description, |
|
keywords=edge_keywords, |
|
source_id=edge_source_id, |
|
) |
|
|
|
|
|
async def _merge_nodes_then_upsert( |
|
entity_name: str, |
|
nodes_data: list[dict], |
|
knowledge_graph_inst: BaseGraphStorage, |
|
global_config: dict, |
|
): |
|
already_entitiy_types = [] |
|
already_source_ids = [] |
|
already_description = [] |
|
|
|
already_node = await knowledge_graph_inst.get_node(entity_name) |
|
if already_node is not None: |
|
already_entitiy_types.append(already_node["entity_type"]) |
|
already_source_ids.extend( |
|
split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP]) |
|
) |
|
already_description.append(already_node["description"]) |
|
|
|
entity_type = sorted( |
|
Counter( |
|
[dp["entity_type"] for dp in nodes_data] + already_entitiy_types |
|
).items(), |
|
key=lambda x: x[1], |
|
reverse=True, |
|
)[0][0] |
|
description = GRAPH_FIELD_SEP.join( |
|
sorted(set([dp["description"] for dp in nodes_data] + already_description)) |
|
) |
|
source_id = GRAPH_FIELD_SEP.join( |
|
set([dp["source_id"] for dp in nodes_data] + already_source_ids) |
|
) |
|
description = await _handle_entity_relation_summary( |
|
entity_name, description, global_config |
|
) |
|
node_data = dict( |
|
entity_type=entity_type, |
|
description=description, |
|
source_id=source_id, |
|
) |
|
await knowledge_graph_inst.upsert_node( |
|
entity_name, |
|
node_data=node_data, |
|
) |
|
node_data["entity_name"] = entity_name |
|
return node_data |
|
|
|
|
|
async def _merge_edges_then_upsert( |
|
src_id: str, |
|
tgt_id: str, |
|
edges_data: list[dict], |
|
knowledge_graph_inst: BaseGraphStorage, |
|
global_config: dict, |
|
): |
|
already_weights = [] |
|
already_source_ids = [] |
|
already_description = [] |
|
already_keywords = [] |
|
|
|
if await knowledge_graph_inst.has_edge(src_id, tgt_id): |
|
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id) |
|
already_weights.append(already_edge["weight"]) |
|
already_source_ids.extend( |
|
split_string_by_multi_markers(already_edge["source_id"], [GRAPH_FIELD_SEP]) |
|
) |
|
already_description.append(already_edge["description"]) |
|
already_keywords.extend( |
|
split_string_by_multi_markers(already_edge["keywords"], [GRAPH_FIELD_SEP]) |
|
) |
|
|
|
weight = sum([dp["weight"] for dp in edges_data] + already_weights) |
|
description = GRAPH_FIELD_SEP.join( |
|
sorted(set([dp["description"] for dp in edges_data] + already_description)) |
|
) |
|
keywords = GRAPH_FIELD_SEP.join( |
|
sorted(set([dp["keywords"] for dp in edges_data] + already_keywords)) |
|
) |
|
source_id = GRAPH_FIELD_SEP.join( |
|
set([dp["source_id"] for dp in edges_data] + already_source_ids) |
|
) |
|
for need_insert_id in [src_id, tgt_id]: |
|
if not (await knowledge_graph_inst.has_node(need_insert_id)): |
|
await knowledge_graph_inst.upsert_node( |
|
need_insert_id, |
|
node_data={ |
|
"source_id": source_id, |
|
"description": description, |
|
"entity_type": '"UNKNOWN"', |
|
}, |
|
) |
|
description = await _handle_entity_relation_summary( |
|
(src_id, tgt_id), description, global_config |
|
) |
|
await knowledge_graph_inst.upsert_edge( |
|
src_id, |
|
tgt_id, |
|
edge_data=dict( |
|
weight=weight, |
|
description=description, |
|
keywords=keywords, |
|
source_id=source_id, |
|
), |
|
) |
|
|
|
edge_data = dict( |
|
src_id=src_id, |
|
tgt_id=tgt_id, |
|
description=description, |
|
keywords=keywords, |
|
) |
|
|
|
return edge_data |
|
|
|
|
|
async def extract_entities( |
|
chunks: dict[str, TextChunkSchema], |
|
knowledge_graph_inst: BaseGraphStorage, |
|
entity_vdb: BaseVectorStorage, |
|
relationships_vdb: BaseVectorStorage, |
|
global_config: dict, |
|
) -> Union[BaseGraphStorage, None]: |
|
use_llm_func: callable = global_config["llm_model_func"] |
|
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"] |
|
|
|
ordered_chunks = list(chunks.items()) |
|
|
|
entity_extract_prompt = PROMPTS["entity_extraction"] |
|
context_base = dict( |
|
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"], |
|
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"], |
|
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"], |
|
entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]), |
|
) |
|
continue_prompt = PROMPTS["entiti_continue_extraction"] |
|
if_loop_prompt = PROMPTS["entiti_if_loop_extraction"] |
|
|
|
already_processed = 0 |
|
already_entities = 0 |
|
already_relations = 0 |
|
|
|
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]): |
|
nonlocal already_processed, already_entities, already_relations |
|
chunk_key = chunk_key_dp[0] |
|
chunk_dp = chunk_key_dp[1] |
|
content = chunk_dp["content"] |
|
hint_prompt = entity_extract_prompt.format(**context_base, input_text=content) |
|
final_result = await use_llm_func(hint_prompt) |
|
|
|
history = pack_user_ass_to_openai_messages(hint_prompt, final_result) |
|
for now_glean_index in range(entity_extract_max_gleaning): |
|
glean_result = await use_llm_func(continue_prompt, history_messages=history) |
|
|
|
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result) |
|
final_result += glean_result |
|
if now_glean_index == entity_extract_max_gleaning - 1: |
|
break |
|
|
|
if_loop_result: str = await use_llm_func( |
|
if_loop_prompt, history_messages=history |
|
) |
|
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower() |
|
if if_loop_result != "yes": |
|
break |
|
|
|
records = split_string_by_multi_markers( |
|
final_result, |
|
[context_base["record_delimiter"], context_base["completion_delimiter"]], |
|
) |
|
|
|
maybe_nodes = defaultdict(list) |
|
maybe_edges = defaultdict(list) |
|
for record in records: |
|
record = re.search(r"\((.*)\)", record) |
|
if record is None: |
|
continue |
|
record = record.group(1) |
|
record_attributes = split_string_by_multi_markers( |
|
record, [context_base["tuple_delimiter"]] |
|
) |
|
if_entities = await _handle_single_entity_extraction( |
|
record_attributes, chunk_key |
|
) |
|
if if_entities is not None: |
|
maybe_nodes[if_entities["entity_name"]].append(if_entities) |
|
continue |
|
|
|
if_relation = await _handle_single_relationship_extraction( |
|
record_attributes, chunk_key |
|
) |
|
if if_relation is not None: |
|
maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append( |
|
if_relation |
|
) |
|
already_processed += 1 |
|
already_entities += len(maybe_nodes) |
|
already_relations += len(maybe_edges) |
|
now_ticks = PROMPTS["process_tickers"][ |
|
already_processed % len(PROMPTS["process_tickers"]) |
|
] |
|
print( |
|
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r", |
|
end="", |
|
flush=True, |
|
) |
|
return dict(maybe_nodes), dict(maybe_edges) |
|
|
|
|
|
results = await asyncio.gather( |
|
*[_process_single_content(c) for c in ordered_chunks] |
|
) |
|
print() |
|
maybe_nodes = defaultdict(list) |
|
maybe_edges = defaultdict(list) |
|
for m_nodes, m_edges in results: |
|
for k, v in m_nodes.items(): |
|
maybe_nodes[k].extend(v) |
|
for k, v in m_edges.items(): |
|
maybe_edges[tuple(sorted(k))].extend(v) |
|
all_entities_data = await asyncio.gather( |
|
*[ |
|
_merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config) |
|
for k, v in maybe_nodes.items() |
|
] |
|
) |
|
all_relationships_data = await asyncio.gather( |
|
*[ |
|
_merge_edges_then_upsert(k[0], k[1], v, knowledge_graph_inst, global_config) |
|
for k, v in maybe_edges.items() |
|
] |
|
) |
|
if not len(all_entities_data): |
|
logger.warning("Didn't extract any entities, maybe your LLM is not working") |
|
return None |
|
if not len(all_relationships_data): |
|
logger.warning( |
|
"Didn't extract any relationships, maybe your LLM is not working" |
|
) |
|
return None |
|
|
|
if entity_vdb is not None: |
|
data_for_vdb = { |
|
compute_mdhash_id(dp["entity_name"], prefix="ent-"): { |
|
"content": dp["entity_name"] + dp["description"], |
|
"entity_name": dp["entity_name"], |
|
} |
|
for dp in all_entities_data |
|
} |
|
await entity_vdb.upsert(data_for_vdb) |
|
|
|
if relationships_vdb is not None: |
|
data_for_vdb = { |
|
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): { |
|
"src_id": dp["src_id"], |
|
"tgt_id": dp["tgt_id"], |
|
"content": dp["keywords"] |
|
+ dp["src_id"] |
|
+ dp["tgt_id"] |
|
+ dp["description"], |
|
} |
|
for dp in all_relationships_data |
|
} |
|
await relationships_vdb.upsert(data_for_vdb) |
|
|
|
return knowledge_graph_inst |
|
|
|
|
|
async def local_query( |
|
query, |
|
knowledge_graph_inst: BaseGraphStorage, |
|
entities_vdb: BaseVectorStorage, |
|
relationships_vdb: BaseVectorStorage, |
|
text_chunks_db: BaseKVStorage[TextChunkSchema], |
|
query_param: QueryParam, |
|
global_config: dict, |
|
) -> str: |
|
context = None |
|
use_model_func = global_config["llm_model_func"] |
|
|
|
kw_prompt_temp = PROMPTS["keywords_extraction"] |
|
kw_prompt = kw_prompt_temp.format(query=query) |
|
result = await use_model_func(kw_prompt) |
|
json_text = locate_json_string_body_from_string(result) |
|
|
|
try: |
|
keywords_data = json.loads(json_text) |
|
keywords = keywords_data.get("low_level_keywords", []) |
|
keywords = ", ".join(keywords) |
|
except json.JSONDecodeError: |
|
try: |
|
result = ( |
|
result.replace(kw_prompt[:-1], "") |
|
.replace("user", "") |
|
.replace("model", "") |
|
.strip() |
|
) |
|
result = "{" + result.split("{")[-1].split("}")[0] + "}" |
|
|
|
keywords_data = json.loads(result) |
|
keywords = keywords_data.get("low_level_keywords", []) |
|
keywords = ", ".join(keywords) |
|
|
|
except json.JSONDecodeError as e: |
|
print(f"JSON parsing error: {e}") |
|
return PROMPTS["fail_response"] |
|
if keywords: |
|
context = await _build_local_query_context( |
|
keywords, |
|
knowledge_graph_inst, |
|
entities_vdb, |
|
text_chunks_db, |
|
query_param, |
|
) |
|
if query_param.only_need_context: |
|
return context |
|
if context is None: |
|
return PROMPTS["fail_response"] |
|
sys_prompt_temp = PROMPTS["rag_response"] |
|
sys_prompt = sys_prompt_temp.format( |
|
context_data=context, response_type=query_param.response_type |
|
) |
|
response = await use_model_func( |
|
query, |
|
system_prompt=sys_prompt, |
|
) |
|
if len(response) > len(sys_prompt): |
|
response = ( |
|
response.replace(sys_prompt, "") |
|
.replace("user", "") |
|
.replace("model", "") |
|
.replace(query, "") |
|
.replace("<system>", "") |
|
.replace("</system>", "") |
|
.strip() |
|
) |
|
|
|
return response |
|
|
|
|
|
async def _build_local_query_context( |
|
query, |
|
knowledge_graph_inst: BaseGraphStorage, |
|
entities_vdb: BaseVectorStorage, |
|
text_chunks_db: BaseKVStorage[TextChunkSchema], |
|
query_param: QueryParam, |
|
): |
|
results = await entities_vdb.query(query, top_k=query_param.top_k) |
|
|
|
if not len(results): |
|
return None |
|
node_datas = await asyncio.gather( |
|
*[knowledge_graph_inst.get_node(r["entity_name"]) for r in results] |
|
) |
|
if not all([n is not None for n in node_datas]): |
|
logger.warning("Some nodes are missing, maybe the storage is damaged") |
|
node_degrees = await asyncio.gather( |
|
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results] |
|
) |
|
node_datas = [ |
|
{**n, "entity_name": k["entity_name"], "rank": d} |
|
for k, n, d in zip(results, node_datas, node_degrees) |
|
if n is not None |
|
] |
|
use_text_units = await _find_most_related_text_unit_from_entities( |
|
node_datas, query_param, text_chunks_db, knowledge_graph_inst |
|
) |
|
use_relations = await _find_most_related_edges_from_entities( |
|
node_datas, query_param, knowledge_graph_inst |
|
) |
|
logger.info( |
|
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units" |
|
) |
|
entites_section_list = [["id", "entity", "type", "description", "rank"]] |
|
for i, n in enumerate(node_datas): |
|
entites_section_list.append( |
|
[ |
|
i, |
|
n["entity_name"], |
|
n.get("entity_type", "UNKNOWN"), |
|
n.get("description", "UNKNOWN"), |
|
n["rank"], |
|
] |
|
) |
|
entities_context = list_of_list_to_csv(entites_section_list) |
|
|
|
relations_section_list = [ |
|
["id", "source", "target", "description", "keywords", "weight", "rank"] |
|
] |
|
for i, e in enumerate(use_relations): |
|
relations_section_list.append( |
|
[ |
|
i, |
|
e["src_tgt"][0], |
|
e["src_tgt"][1], |
|
e["description"], |
|
e["keywords"], |
|
e["weight"], |
|
e["rank"], |
|
] |
|
) |
|
relations_context = list_of_list_to_csv(relations_section_list) |
|
|
|
text_units_section_list = [["id", "content"]] |
|
for i, t in enumerate(use_text_units): |
|
text_units_section_list.append([i, t["content"]]) |
|
text_units_context = list_of_list_to_csv(text_units_section_list) |
|
return f""" |
|
-----Entities----- |
|
```csv |
|
{entities_context} |
|
``` |
|
-----Relationships----- |
|
```csv |
|
{relations_context} |
|
``` |
|
-----Sources----- |
|
```csv |
|
{text_units_context} |
|
``` |
|
""" |
|
|
|
|
|
async def _find_most_related_text_unit_from_entities( |
|
node_datas: list[dict], |
|
query_param: QueryParam, |
|
text_chunks_db: BaseKVStorage[TextChunkSchema], |
|
knowledge_graph_inst: BaseGraphStorage, |
|
): |
|
text_units = [ |
|
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP]) |
|
for dp in node_datas |
|
] |
|
edges = await asyncio.gather( |
|
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas] |
|
) |
|
all_one_hop_nodes = set() |
|
for this_edges in edges: |
|
if not this_edges: |
|
continue |
|
all_one_hop_nodes.update([e[1] for e in this_edges]) |
|
|
|
all_one_hop_nodes = list(all_one_hop_nodes) |
|
all_one_hop_nodes_data = await asyncio.gather( |
|
*[knowledge_graph_inst.get_node(e) for e in all_one_hop_nodes] |
|
) |
|
|
|
|
|
all_one_hop_text_units_lookup = { |
|
k: set(split_string_by_multi_markers(v["source_id"], [GRAPH_FIELD_SEP])) |
|
for k, v in zip(all_one_hop_nodes, all_one_hop_nodes_data) |
|
if v is not None and "source_id" in v |
|
} |
|
|
|
all_text_units_lookup = {} |
|
for index, (this_text_units, this_edges) in enumerate(zip(text_units, edges)): |
|
for c_id in this_text_units: |
|
if c_id not in all_text_units_lookup: |
|
all_text_units_lookup[c_id] = { |
|
"data": await text_chunks_db.get_by_id(c_id), |
|
"order": index, |
|
"relation_counts": 0, |
|
} |
|
|
|
if this_edges: |
|
for e in this_edges: |
|
if ( |
|
e[1] in all_one_hop_text_units_lookup |
|
and c_id in all_one_hop_text_units_lookup[e[1]] |
|
): |
|
all_text_units_lookup[c_id]["relation_counts"] += 1 |
|
|
|
|
|
all_text_units = [ |
|
{"id": k, **v} |
|
for k, v in all_text_units_lookup.items() |
|
if v is not None and v.get("data") is not None and "content" in v["data"] |
|
] |
|
|
|
if not all_text_units: |
|
logger.warning("No valid text units found") |
|
return [] |
|
|
|
all_text_units = sorted( |
|
all_text_units, key=lambda x: (x["order"], -x["relation_counts"]) |
|
) |
|
|
|
all_text_units = truncate_list_by_token_size( |
|
all_text_units, |
|
key=lambda x: x["data"]["content"], |
|
max_token_size=query_param.max_token_for_text_unit, |
|
) |
|
|
|
all_text_units = [t["data"] for t in all_text_units] |
|
return all_text_units |
|
|
|
|
|
async def _find_most_related_edges_from_entities( |
|
node_datas: list[dict], |
|
query_param: QueryParam, |
|
knowledge_graph_inst: BaseGraphStorage, |
|
): |
|
all_related_edges = await asyncio.gather( |
|
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas] |
|
) |
|
all_edges = [] |
|
seen = set() |
|
|
|
for this_edges in all_related_edges: |
|
for e in this_edges: |
|
sorted_edge = tuple(sorted(e)) |
|
if sorted_edge not in seen: |
|
seen.add(sorted_edge) |
|
all_edges.append(sorted_edge) |
|
|
|
all_edges_pack = await asyncio.gather( |
|
*[knowledge_graph_inst.get_edge(e[0], e[1]) for e in all_edges] |
|
) |
|
all_edges_degree = await asyncio.gather( |
|
*[knowledge_graph_inst.edge_degree(e[0], e[1]) for e in all_edges] |
|
) |
|
all_edges_data = [ |
|
{"src_tgt": k, "rank": d, **v} |
|
for k, v, d in zip(all_edges, all_edges_pack, all_edges_degree) |
|
if v is not None |
|
] |
|
all_edges_data = sorted( |
|
all_edges_data, key=lambda x: (x["rank"], x["weight"]), reverse=True |
|
) |
|
all_edges_data = truncate_list_by_token_size( |
|
all_edges_data, |
|
key=lambda x: x["description"], |
|
max_token_size=query_param.max_token_for_global_context, |
|
) |
|
return all_edges_data |
|
|
|
|
|
async def global_query( |
|
query, |
|
knowledge_graph_inst: BaseGraphStorage, |
|
entities_vdb: BaseVectorStorage, |
|
relationships_vdb: BaseVectorStorage, |
|
text_chunks_db: BaseKVStorage[TextChunkSchema], |
|
query_param: QueryParam, |
|
global_config: dict, |
|
) -> str: |
|
context = None |
|
use_model_func = global_config["llm_model_func"] |
|
|
|
kw_prompt_temp = PROMPTS["keywords_extraction"] |
|
kw_prompt = kw_prompt_temp.format(query=query) |
|
result = await use_model_func(kw_prompt) |
|
json_text = locate_json_string_body_from_string(result) |
|
|
|
try: |
|
keywords_data = json.loads(json_text) |
|
keywords = keywords_data.get("high_level_keywords", []) |
|
keywords = ", ".join(keywords) |
|
except json.JSONDecodeError: |
|
try: |
|
result = ( |
|
result.replace(kw_prompt[:-1], "") |
|
.replace("user", "") |
|
.replace("model", "") |
|
.strip() |
|
) |
|
result = "{" + result.split("{")[-1].split("}")[0] + "}" |
|
|
|
keywords_data = json.loads(result) |
|
keywords = keywords_data.get("high_level_keywords", []) |
|
keywords = ", ".join(keywords) |
|
|
|
except json.JSONDecodeError as e: |
|
|
|
print(f"JSON parsing error: {e}") |
|
return PROMPTS["fail_response"] |
|
if keywords: |
|
context = await _build_global_query_context( |
|
keywords, |
|
knowledge_graph_inst, |
|
entities_vdb, |
|
relationships_vdb, |
|
text_chunks_db, |
|
query_param, |
|
) |
|
|
|
if query_param.only_need_context: |
|
return context |
|
if context is None: |
|
return PROMPTS["fail_response"] |
|
|
|
sys_prompt_temp = PROMPTS["rag_response"] |
|
sys_prompt = sys_prompt_temp.format( |
|
context_data=context, response_type=query_param.response_type |
|
) |
|
response = await use_model_func( |
|
query, |
|
system_prompt=sys_prompt, |
|
) |
|
if len(response) > len(sys_prompt): |
|
response = ( |
|
response.replace(sys_prompt, "") |
|
.replace("user", "") |
|
.replace("model", "") |
|
.replace(query, "") |
|
.replace("<system>", "") |
|
.replace("</system>", "") |
|
.strip() |
|
) |
|
|
|
return response |
|
|
|
|
|
async def _build_global_query_context( |
|
keywords, |
|
knowledge_graph_inst: BaseGraphStorage, |
|
entities_vdb: BaseVectorStorage, |
|
relationships_vdb: BaseVectorStorage, |
|
text_chunks_db: BaseKVStorage[TextChunkSchema], |
|
query_param: QueryParam, |
|
): |
|
results = await relationships_vdb.query(keywords, top_k=query_param.top_k) |
|
|
|
if not len(results): |
|
return None |
|
|
|
edge_datas = await asyncio.gather( |
|
*[knowledge_graph_inst.get_edge(r["src_id"], r["tgt_id"]) for r in results] |
|
) |
|
|
|
if not all([n is not None for n in edge_datas]): |
|
logger.warning("Some edges are missing, maybe the storage is damaged") |
|
edge_degree = await asyncio.gather( |
|
*[knowledge_graph_inst.edge_degree(r["src_id"], r["tgt_id"]) for r in results] |
|
) |
|
edge_datas = [ |
|
{"src_id": k["src_id"], "tgt_id": k["tgt_id"], "rank": d, **v} |
|
for k, v, d in zip(results, edge_datas, edge_degree) |
|
if v is not None |
|
] |
|
edge_datas = sorted( |
|
edge_datas, key=lambda x: (x["rank"], x["weight"]), reverse=True |
|
) |
|
edge_datas = truncate_list_by_token_size( |
|
edge_datas, |
|
key=lambda x: x["description"], |
|
max_token_size=query_param.max_token_for_global_context, |
|
) |
|
|
|
use_entities = await _find_most_related_entities_from_relationships( |
|
edge_datas, query_param, knowledge_graph_inst |
|
) |
|
use_text_units = await _find_related_text_unit_from_relationships( |
|
edge_datas, query_param, text_chunks_db, knowledge_graph_inst |
|
) |
|
logger.info( |
|
f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} text units" |
|
) |
|
relations_section_list = [ |
|
["id", "source", "target", "description", "keywords", "weight", "rank"] |
|
] |
|
for i, e in enumerate(edge_datas): |
|
relations_section_list.append( |
|
[ |
|
i, |
|
e["src_id"], |
|
e["tgt_id"], |
|
e["description"], |
|
e["keywords"], |
|
e["weight"], |
|
e["rank"], |
|
] |
|
) |
|
relations_context = list_of_list_to_csv(relations_section_list) |
|
|
|
entites_section_list = [["id", "entity", "type", "description", "rank"]] |
|
for i, n in enumerate(use_entities): |
|
entites_section_list.append( |
|
[ |
|
i, |
|
n["entity_name"], |
|
n.get("entity_type", "UNKNOWN"), |
|
n.get("description", "UNKNOWN"), |
|
n["rank"], |
|
] |
|
) |
|
entities_context = list_of_list_to_csv(entites_section_list) |
|
|
|
text_units_section_list = [["id", "content"]] |
|
for i, t in enumerate(use_text_units): |
|
text_units_section_list.append([i, t["content"]]) |
|
text_units_context = list_of_list_to_csv(text_units_section_list) |
|
|
|
return f""" |
|
-----Entities----- |
|
```csv |
|
{entities_context} |
|
``` |
|
-----Relationships----- |
|
```csv |
|
{relations_context} |
|
``` |
|
-----Sources----- |
|
```csv |
|
{text_units_context} |
|
``` |
|
""" |
|
|
|
|
|
async def _find_most_related_entities_from_relationships( |
|
edge_datas: list[dict], |
|
query_param: QueryParam, |
|
knowledge_graph_inst: BaseGraphStorage, |
|
): |
|
entity_names = [] |
|
seen = set() |
|
|
|
for e in edge_datas: |
|
if e["src_id"] not in seen: |
|
entity_names.append(e["src_id"]) |
|
seen.add(e["src_id"]) |
|
if e["tgt_id"] not in seen: |
|
entity_names.append(e["tgt_id"]) |
|
seen.add(e["tgt_id"]) |
|
|
|
node_datas = await asyncio.gather( |
|
*[knowledge_graph_inst.get_node(entity_name) for entity_name in entity_names] |
|
) |
|
|
|
node_degrees = await asyncio.gather( |
|
*[knowledge_graph_inst.node_degree(entity_name) for entity_name in entity_names] |
|
) |
|
node_datas = [ |
|
{**n, "entity_name": k, "rank": d} |
|
for k, n, d in zip(entity_names, node_datas, node_degrees) |
|
] |
|
|
|
node_datas = truncate_list_by_token_size( |
|
node_datas, |
|
key=lambda x: x["description"], |
|
max_token_size=query_param.max_token_for_local_context, |
|
) |
|
|
|
return node_datas |
|
|
|
|
|
async def _find_related_text_unit_from_relationships( |
|
edge_datas: list[dict], |
|
query_param: QueryParam, |
|
text_chunks_db: BaseKVStorage[TextChunkSchema], |
|
knowledge_graph_inst: BaseGraphStorage, |
|
): |
|
text_units = [ |
|
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP]) |
|
for dp in edge_datas |
|
] |
|
|
|
all_text_units_lookup = {} |
|
|
|
for index, unit_list in enumerate(text_units): |
|
for c_id in unit_list: |
|
if c_id not in all_text_units_lookup: |
|
all_text_units_lookup[c_id] = { |
|
"data": await text_chunks_db.get_by_id(c_id), |
|
"order": index, |
|
} |
|
|
|
if any([v is None for v in all_text_units_lookup.values()]): |
|
logger.warning("Text chunks are missing, maybe the storage is damaged") |
|
all_text_units = [ |
|
{"id": k, **v} for k, v in all_text_units_lookup.items() if v is not None |
|
] |
|
all_text_units = sorted(all_text_units, key=lambda x: x["order"]) |
|
all_text_units = truncate_list_by_token_size( |
|
all_text_units, |
|
key=lambda x: x["data"]["content"], |
|
max_token_size=query_param.max_token_for_text_unit, |
|
) |
|
all_text_units: list[TextChunkSchema] = [t["data"] for t in all_text_units] |
|
|
|
return all_text_units |
|
|
|
|
|
async def hybrid_query( |
|
query, |
|
knowledge_graph_inst: BaseGraphStorage, |
|
entities_vdb: BaseVectorStorage, |
|
relationships_vdb: BaseVectorStorage, |
|
text_chunks_db: BaseKVStorage[TextChunkSchema], |
|
query_param: QueryParam, |
|
global_config: dict, |
|
) -> str: |
|
low_level_context = None |
|
high_level_context = None |
|
use_model_func = global_config["llm_model_func"] |
|
|
|
kw_prompt_temp = PROMPTS["keywords_extraction"] |
|
kw_prompt = kw_prompt_temp.format(query=query) |
|
|
|
result = await use_model_func(kw_prompt) |
|
json_text = locate_json_string_body_from_string(result) |
|
try: |
|
keywords_data = json.loads(json_text) |
|
hl_keywords = keywords_data.get("high_level_keywords", []) |
|
ll_keywords = keywords_data.get("low_level_keywords", []) |
|
hl_keywords = ", ".join(hl_keywords) |
|
ll_keywords = ", ".join(ll_keywords) |
|
except json.JSONDecodeError: |
|
try: |
|
result = ( |
|
result.replace(kw_prompt[:-1], "") |
|
.replace("user", "") |
|
.replace("model", "") |
|
.strip() |
|
) |
|
result = "{" + result.split("{")[-1].split("}")[0] + "}" |
|
keywords_data = json.loads(result) |
|
hl_keywords = keywords_data.get("high_level_keywords", []) |
|
ll_keywords = keywords_data.get("low_level_keywords", []) |
|
hl_keywords = ", ".join(hl_keywords) |
|
ll_keywords = ", ".join(ll_keywords) |
|
|
|
except json.JSONDecodeError as e: |
|
print(f"JSON parsing error: {e}") |
|
return PROMPTS["fail_response"] |
|
|
|
if ll_keywords: |
|
low_level_context = await _build_local_query_context( |
|
ll_keywords, |
|
knowledge_graph_inst, |
|
entities_vdb, |
|
text_chunks_db, |
|
query_param, |
|
) |
|
|
|
if hl_keywords: |
|
high_level_context = await _build_global_query_context( |
|
hl_keywords, |
|
knowledge_graph_inst, |
|
entities_vdb, |
|
relationships_vdb, |
|
text_chunks_db, |
|
query_param, |
|
) |
|
|
|
context = combine_contexts(high_level_context, low_level_context) |
|
|
|
if query_param.only_need_context: |
|
return context |
|
if context is None: |
|
return PROMPTS["fail_response"] |
|
|
|
sys_prompt_temp = PROMPTS["rag_response"] |
|
sys_prompt = sys_prompt_temp.format( |
|
context_data=context, response_type=query_param.response_type |
|
) |
|
response = await use_model_func( |
|
query, |
|
system_prompt=sys_prompt, |
|
) |
|
if len(response) > len(sys_prompt): |
|
response = ( |
|
response.replace(sys_prompt, "") |
|
.replace("user", "") |
|
.replace("model", "") |
|
.replace(query, "") |
|
.replace("<system>", "") |
|
.replace("</system>", "") |
|
.strip() |
|
) |
|
return response |
|
|
|
|
|
def combine_contexts(high_level_context, low_level_context): |
|
|
|
|
|
def extract_sections(context): |
|
entities_match = re.search( |
|
r"-----Entities-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL |
|
) |
|
relationships_match = re.search( |
|
r"-----Relationships-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL |
|
) |
|
sources_match = re.search( |
|
r"-----Sources-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL |
|
) |
|
|
|
entities = entities_match.group(1) if entities_match else "" |
|
relationships = relationships_match.group(1) if relationships_match else "" |
|
sources = sources_match.group(1) if sources_match else "" |
|
|
|
return entities, relationships, sources |
|
|
|
|
|
|
|
if high_level_context is None: |
|
warnings.warn( |
|
"High Level context is None. Return empty High entity/relationship/source" |
|
) |
|
hl_entities, hl_relationships, hl_sources = "", "", "" |
|
else: |
|
hl_entities, hl_relationships, hl_sources = extract_sections(high_level_context) |
|
|
|
if low_level_context is None: |
|
warnings.warn( |
|
"Low Level context is None. Return empty Low entity/relationship/source" |
|
) |
|
ll_entities, ll_relationships, ll_sources = "", "", "" |
|
else: |
|
ll_entities, ll_relationships, ll_sources = extract_sections(low_level_context) |
|
|
|
|
|
combined_entities = process_combine_contexts(hl_entities, ll_entities) |
|
|
|
|
|
combined_relationships = process_combine_contexts( |
|
hl_relationships, ll_relationships |
|
) |
|
|
|
|
|
combined_sources = process_combine_contexts(hl_sources, ll_sources) |
|
|
|
|
|
return f""" |
|
-----Entities----- |
|
```csv |
|
{combined_entities} |
|
``` |
|
-----Relationships----- |
|
```csv |
|
{combined_relationships} |
|
``` |
|
-----Sources----- |
|
```csv |
|
{combined_sources} |
|
``` |
|
""" |
|
|
|
|
|
async def naive_query( |
|
query, |
|
chunks_vdb: BaseVectorStorage, |
|
text_chunks_db: BaseKVStorage[TextChunkSchema], |
|
query_param: QueryParam, |
|
global_config: dict, |
|
): |
|
use_model_func = global_config["llm_model_func"] |
|
results = await chunks_vdb.query(query, top_k=query_param.top_k) |
|
if not len(results): |
|
return PROMPTS["fail_response"] |
|
chunks_ids = [r["id"] for r in results] |
|
chunks = await text_chunks_db.get_by_ids(chunks_ids) |
|
|
|
maybe_trun_chunks = truncate_list_by_token_size( |
|
chunks, |
|
key=lambda x: x["content"], |
|
max_token_size=query_param.max_token_for_text_unit, |
|
) |
|
logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks") |
|
section = "--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks]) |
|
if query_param.only_need_context: |
|
return section |
|
sys_prompt_temp = PROMPTS["naive_rag_response"] |
|
sys_prompt = sys_prompt_temp.format( |
|
content_data=section, response_type=query_param.response_type |
|
) |
|
response = await use_model_func( |
|
query, |
|
system_prompt=sys_prompt, |
|
) |
|
|
|
if len(response) > len(sys_prompt): |
|
response = ( |
|
response[len(sys_prompt) :] |
|
.replace(sys_prompt, "") |
|
.replace("user", "") |
|
.replace("model", "") |
|
.replace(query, "") |
|
.replace("<system>", "") |
|
.replace("</system>", "") |
|
.strip() |
|
) |
|
|
|
return response |
|
|