File size: 1,569 Bytes
2d22f21
3164527
5da36ef
 
8843bcd
84bcdcd
593cc35
2e8e71a
 
8843bcd
84bcdcd
 
2d22f21
593cc35
 
3164527
8843bcd
 
 
 
 
 
 
 
 
 
 
2d22f21
8843bcd
593cc35
8843bcd
2e8e71a
 
 
 
 
 
3164527
 
 
 
593cc35
3164527
8843bcd
593cc35
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from config import config
from app.src.src import pipeline_sentiment, pipeline_stats, pipeline_summarize

from fastapi import FastAPI
from pydantic import BaseModel
# from transformers import pipeline
# import uvicorn
import pandas as pd
import os

# sentiment_model = pipeline(model=config.sentiment_model)
# sum_model = pipeline(model=config.sum_model, use_fast=True)
headers = {"Authorization": f"Bearer {os.environ.get('API_TOKEN')}"}
SENT_API_URL = f"https://api-inference.huggingface.co/models/{config.sentiment_model}"
SUM_API_URL = f"https://api-inference.huggingface.co/models/{config.sum_model}"

app = FastAPI()

class YouTubeUrl(BaseModel):
    url_video: str

@app.get('/')
def read_root():
    return {'message': 'FastAPI+HuggingFace app sentiment + summarize YouTube comments'}

@app.post('/comments')
def get_comments(url_video: YouTubeUrl):
    data = pipeline_sentiment(url_video.url_video, os.environ.get("API_KEY"), headers, SENT_API_URL)
    data.to_csv(f"{config.DATA_FILE}", index=False)
    return data # {'message': 'Success'}

@app.get('/stats')
def get_stats_sent():
    if f"{config.NAME_DATA}" in os.listdir(f"{config.PATH_DATA}"):
        data = pd.read_csv(f"{config.DATA_FILE}")
        return pipeline_stats(data)

@app.get('/summarization')
def get_summarize():
    if f"{config.NAME_DATA}" in os.listdir(f"{config.PATH_DATA}"):
        data = pd.read_csv(f"{config.DATA_FILE}")
        return pipeline_summarize(data['text_comment'], headers, SUM_API_URL)


#if __name__ == '__main__':
#    uvicorn.run(app, host='127.0.0.1', port=80)