CryptAL commited on
Commit
7133941
·
1 Parent(s): 4280433

Added test description

Browse files
Files changed (1) hide show
  1. app.py +12 -2
app.py CHANGED
@@ -1,4 +1,5 @@
1
  # Code adapted from: https://huggingface.co/spaces/RaoFoundation/pretraining-leaderboard/blob/main/app.py
 
2
  import argparse
3
  import functools
4
  import traceback
@@ -21,11 +22,20 @@ import pandas as pd
21
 
22
  load_dotenv()
23
 
 
 
24
  FONT = (
25
  """<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
26
  )
27
  TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 9 Leaderboard</h1>"""
28
  HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/macrocosm-os/pretraining" target="_blank">Subnet 9</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that rewards miners for producing pretrained Foundation-Models on the <a href="https://huggingface.co/datasets/tiiuae/falcon-refinedweb" target="_blank">Falcon Refined Web dataset</a>. It acts like a continuous benchmark whereby miners are rewarded for attaining the best losses on randomly sampled pages of Falcon.<br/>The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO.</h3>"""
 
 
 
 
 
 
 
29
  EVALUATION_DETAILS = """<ul><li><b>Name:</b> the 🤗 Hugging Face model name (click to go to the model card)</li><li><b>Rewards / Day:</b> the expected rewards per day based on current ranking.</li><li><b>Last Average Loss:</b> the last loss value on the evaluation data for the model as calculated by a validator (lower is better)</li><li><b>UID:</b> the Bittensor UID of the miner</li><li><b>Block:</b> the Bittensor block that the model was submitted in</li></ul><br/>More stats on <a href="https://taostats.io/subnets/netuid-9/" target="_blank">taostats</a>."""
30
  EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by the Opentensor validator</h3>"""
31
  VALIDATOR_WANDB_PROJECT = "opentensor-dev/pretraining-subnet"
@@ -435,6 +445,6 @@ def main():
435
  scheduler.start()
436
 
437
  demo.launch()
 
438
 
439
-
440
- main()
 
1
  # Code adapted from: https://huggingface.co/spaces/RaoFoundation/pretraining-leaderboard/blob/main/app.py
2
+ '''
3
  import argparse
4
  import functools
5
  import traceback
 
22
 
23
  load_dotenv()
24
 
25
+ '''
26
+ import gradio as gr
27
  FONT = (
28
  """<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
29
  )
30
  TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 9 Leaderboard</h1>"""
31
  HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/macrocosm-os/pretraining" target="_blank">Subnet 9</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that rewards miners for producing pretrained Foundation-Models on the <a href="https://huggingface.co/datasets/tiiuae/falcon-refinedweb" target="_blank">Falcon Refined Web dataset</a>. It acts like a continuous benchmark whereby miners are rewarded for attaining the best losses on randomly sampled pages of Falcon.<br/>The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO.</h3>"""
32
+
33
+
34
+ gr.HTML(FONT)
35
+ gr.HTML(TITLE)
36
+ gr.HTML(HEADER)
37
+ demo.launch(share=True)
38
+ '''
39
  EVALUATION_DETAILS = """<ul><li><b>Name:</b> the 🤗 Hugging Face model name (click to go to the model card)</li><li><b>Rewards / Day:</b> the expected rewards per day based on current ranking.</li><li><b>Last Average Loss:</b> the last loss value on the evaluation data for the model as calculated by a validator (lower is better)</li><li><b>UID:</b> the Bittensor UID of the miner</li><li><b>Block:</b> the Bittensor block that the model was submitted in</li></ul><br/>More stats on <a href="https://taostats.io/subnets/netuid-9/" target="_blank">taostats</a>."""
40
  EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by the Opentensor validator</h3>"""
41
  VALIDATOR_WANDB_PROJECT = "opentensor-dev/pretraining-subnet"
 
445
  scheduler.start()
446
 
447
  demo.launch()
448
+ '''
449
 
450
+ #main()