Spaces:
Sleeping
Sleeping
File size: 6,680 Bytes
f03aa8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
import tqdm
import time
import wandb
import streamlit as st
import pandas as pd
import bittensor as bt
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
# TODO: Store relevant wandb data in a database for faster access
MIN_STEPS = 10 # minimum number of steps in wandb run in order to be worth analyzing
MAX_RUNS = 100#0000
NETUID = 1
BASE_PATH = 'macrocosmos/prompting-validators'
NETWORK = 'finney'
KEYS = None
ABBREV_CHARS = 8
ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
api = wandb.Api(timeout=600)
IDENTITIES = {
'5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3': 'opentensor',
'5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8': 'taostats',
'5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2': 'foundry',
'5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN': 'bittensor-guru',
'5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v': 'roundtable-21',
'5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux': 'tao-validator',
'5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB': 'datura',
'5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed': 'first-tensor',
'5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x': 'tensorplex',
'5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp': 'owl-ventures',
'5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w': 'rizzo',
'5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf': 'neural-internet'
}
EXTRACTORS = {
'state': lambda x: x.state,
'run_id': lambda x: x.id,
'run_path': lambda x: os.path.join(BASE_PATH, x.id),
'user': lambda x: x.user.name[:16],
'username': lambda x: x.user.username[:16],
'created_at': lambda x: pd.Timestamp(x.created_at),
'last_event_at': lambda x: pd.Timestamp(x.summary.get('_timestamp'), unit='s'),
'netuid': lambda x: x.config.get('netuid'),
'mock': lambda x: x.config.get('neuron').get('mock'),
'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
'timeout': lambda x: x.config.get('neuron').get('timeout'),
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
# This stuff is from the last logged event
'num_steps': lambda x: x.summary.get('_step'),
'runtime': lambda x: x.summary.get('_runtime'),
'query': lambda x: x.summary.get('query'),
'challenge': lambda x: x.summary.get('challenge'),
'reference': lambda x: x.summary.get('reference'),
'completions': lambda x: x.summary.get('completions'),
'version': lambda x: x.tags[0],
'spec_version': lambda x: x.tags[1],
'vali_hotkey': lambda x: x.tags[2],
# 'tasks_selected': lambda x: x.tags[3:],
# System metrics
'disk_read': lambda x: x.system_metrics.get('system.disk.in'),
'disk_write': lambda x: x.system_metrics.get('system.disk.out'),
# Really slow stuff below
# 'started_at': lambda x: x.metadata.get('startedAt'),
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
# 'commit': lambda x: x.metadata.get('git').get('commit')
}
def get_leaderboard(df, ntop=10, entity_choice='identity'):
df = df.loc[df.validator_permit==False]
df.index = range(df.shape[0])
return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop)
@st.cache_data()
def get_metagraph(time):
print(f'Loading metagraph with time {time}')
subtensor = bt.subtensor(network=NETWORK)
m = subtensor.metagraph(netuid=NETUID)
meta_cols = ['I','stake','trust','validator_trust','validator_permit','C','R','E','dividends','last_update']
df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols})
df_m['uid'] = range(m.n.item())
df_m['hotkey'] = list(map(lambda a: a.hotkey, m.axons))
df_m['coldkey'] = list(map(lambda a: a.coldkey, m.axons))
df_m['ip'] = list(map(lambda a: a.ip, m.axons))
df_m['port'] = list(map(lambda a: a.port, m.axons))
df_m['coldkey'] = df_m.coldkey.str[:ABBREV_CHARS]
df_m['hotkey'] = df_m.hotkey.str[:ABBREV_CHARS]
df_m['identity'] = df_m.apply(lambda x: f'{x.hotkey} @ uid {x.uid}', axis=1)
return df_m
@st.cache_data()
def load_run(run_path, keys=KEYS):
print('Loading run:', run_path)
run = api.run(run_path)
df = pd.DataFrame(list(run.scan_history(keys=keys)))
for col in ['updated_at', 'created_at']:
if col in df.columns:
df[col] = pd.to_datetime(df[col])
print(f'+ Loaded {len(df)} records')
return df
@st.cache_data(show_spinner=False)
def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
save_path = '_saved_runs.csv'
filters = {}
df = pd.DataFrame()
# Load the last saved runs so that we only need to update the new ones
if use_cache and os.path.exists(save_path):
df = pd.read_csv(save_path)
df['created_at'] = pd.to_datetime(df['created_at'])
df['last_event_at'] = pd.to_datetime(df['last_event_at'])
timestamp_str = df['last_event_at'].max().isoformat()
filters.update({'updated_at': {'$gte': timestamp_str}})
progress = st.progress(0, text='Loading data')
runs = api.runs(path, filters=filters)
run_data = []
n_events = 0
for i, run in enumerate(tqdm.tqdm(runs, total=len(runs))):
num_steps = run.summary.get('_step',0)
if num_steps<min_steps:
continue
n_events += num_steps
prog_msg = f'Loading data {i/len(runs)*100:.0f}%, {n_events:,.0f} events)'
progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
run_data.append(run)
progress.empty()
df_new = pd.DataFrame([{k: func(run) for k, func in EXTRACTORS.items()} for run in tqdm.tqdm(run_data, total=len(run_data))])
df = pd.concat([df, df_new], ignore_index=True)
df['duration'] = (df.last_event_at - df.created_at).round('s')
df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown')
df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS]
df.to_csv(save_path, index=False)
return df
def load_state_vars():
UPDATE_INTERVAL = 600
df = build_data(time.time()//UPDATE_INTERVAL)
runs_alive_24h_ago = (df.last_event_at > pd.Timestamp.now() - pd.Timedelta('1d'))
df_24h = df.loc[runs_alive_24h_ago]
df_m = get_metagraph(time.time()//UPDATE_INTERVAL)
return {
'dataframe': df,
'dataframe_24h': df_24h,
'metagraph': df_m,
}
if __name__ == '__main__':
print('Loading runs')
df = load_runs()
df.to_csv('test_wandb_data.csv', index=False)
print(df)
|