Spaces:
Sleeping
Sleeping
import os | |
import tqdm | |
import time | |
import glob | |
import wandb | |
from traceback import print_exc | |
import streamlit as st | |
import pandas as pd | |
import bittensor as bt | |
import plotly.express as px | |
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot | |
# TODO: Store relevant wandb data in a database for faster access | |
MIN_STEPS = 10 # minimum number of steps in wandb run in order to be worth analyzing | |
NETUID = 1 | |
BASE_PATH = 'macrocosmos/prompting-validators' | |
NETWORK = 'finney' | |
KEYS = ['_step','_timestamp','task','query','reference','challenge','topic','subtopic'] | |
ABBREV_CHARS = 8 | |
ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey') | |
LOCAL_WANDB_PATH = './data/wandb' | |
USERNAME = 'opentensor' | |
api = wandb.Api(timeout=600) | |
IDENTITIES = { | |
'5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3': 'opentensor', | |
'5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8': 'taostats', | |
'5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2': 'foundry', | |
'5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN': 'bittensor-guru', | |
'5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v': 'roundtable-21', | |
'5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux': 'tao-validator', | |
'5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB': 'datura', | |
'5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed': 'first-tensor', | |
'5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x': 'tensorplex', | |
'5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp': 'owl-ventures', | |
'5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w': 'rizzo', | |
'5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf': 'neural-internet' | |
} | |
EXTRACTORS = { | |
'state': lambda x: x.state, | |
'run_id': lambda x: x.id, | |
'run_path': lambda x: os.path.join(BASE_PATH, x.id), | |
'user': lambda x: x.user.name[:16], | |
'username': lambda x: x.user.username[:16], | |
'created_at': lambda x: pd.Timestamp(x.created_at), | |
'last_event_at': lambda x: pd.Timestamp(x.summary.get('_timestamp'), unit='s'), | |
'netuid': lambda x: x.config.get('netuid'), | |
'mock': lambda x: x.config.get('neuron').get('mock'), | |
'sample_size': lambda x: x.config.get('neuron').get('sample_size'), | |
'timeout': lambda x: x.config.get('neuron').get('timeout'), | |
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'), | |
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'), | |
# This stuff is from the last logged event | |
'num_steps': lambda x: x.summary.get('_step'), | |
'runtime': lambda x: x.summary.get('_runtime'), | |
'query': lambda x: x.summary.get('query'), | |
'challenge': lambda x: x.summary.get('challenge'), | |
'reference': lambda x: x.summary.get('reference'), | |
'completions': lambda x: x.summary.get('completions'), | |
'version': lambda x: x.tags[0], | |
'spec_version': lambda x: x.tags[1], | |
'vali_hotkey': lambda x: x.tags[2], | |
# 'tasks_selected': lambda x: x.tags[3:], | |
# System metrics | |
'disk_read': lambda x: x.system_metrics.get('system.disk.in'), | |
'disk_write': lambda x: x.system_metrics.get('system.disk.out'), | |
# Really slow stuff below | |
# 'started_at': lambda x: x.metadata.get('startedAt'), | |
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'), | |
# 'commit': lambda x: x.metadata.get('git').get('commit') | |
} | |
def get_leaderboard(df, ntop=10, entity_choice='identity'): | |
df = df.loc[df.validator_permit==False] | |
df.index = range(df.shape[0]) | |
return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop) | |
def get_metagraph(time): | |
print(f'Loading metagraph with time {time}') | |
subtensor = bt.subtensor(network=NETWORK) | |
m = subtensor.metagraph(netuid=NETUID) | |
meta_cols = ['I','stake','trust','validator_trust','validator_permit','C','R','E','dividends','last_update'] | |
df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols}) | |
df_m['uid'] = range(m.n.item()) | |
df_m['hotkey'] = list(map(lambda a: a.hotkey, m.axons)) | |
df_m['coldkey'] = list(map(lambda a: a.coldkey, m.axons)) | |
df_m['ip'] = list(map(lambda a: a.ip, m.axons)) | |
df_m['port'] = list(map(lambda a: a.port, m.axons)) | |
df_m['coldkey'] = df_m.coldkey.str[:ABBREV_CHARS] | |
df_m['hotkey'] = df_m.hotkey.str[:ABBREV_CHARS] | |
df_m['identity'] = df_m.apply(lambda x: f'{x.hotkey} @ uid {x.uid}', axis=1) | |
return df_m | |
def load_downloaded_runs(time, cols=KEYS): | |
list_cols = ['rewards','uids'] | |
extra_cols = ['turn'] | |
df_all = pd.DataFrame() | |
progress = st.progress(0, text='Loading downloaded data') | |
paths = glob.glob(os.path.join(LOCAL_WANDB_PATH,'*.parquet')) | |
for i, path in enumerate(paths): | |
run_id = path.split('/')[-1].split('.')[0] | |
frame = pd.read_parquet(path).dropna(subset=cols) | |
frame._timestamp = frame._timestamp.apply(pd.to_datetime, unit='s') | |
# handle missing extra cols such as turn which depend on the version of the codebase | |
found_extra_cols = [c for c in frame.columns if c in extra_cols] | |
df_long = frame[cols+list_cols+found_extra_cols].explode(list_cols) | |
prog_msg = f'Downloading data {i/len(paths)*100:.0f}%' | |
progress.progress(i/len(paths), text=f'{prog_msg}... **downloading** `{run_id}`') | |
df_all = pd.concat([df_all, df_long.assign(run_id=run_id)], ignore_index=True) | |
progress.empty() | |
# Ensure we have consistent naming schema for tasks | |
task_mapping = { | |
'date-based question answering': 'date_qa', | |
'question-answering': 'qa', | |
} | |
df_all.task = df_all.task.apply(lambda x: task_mapping.get(x, x)) | |
# Runs which do not have a turn field are imputed to be turn zero (single turn) | |
df_all.turn.fillna(0, inplace=True) | |
df_all.sort_values(by=['_timestamp'], inplace=True) | |
return df_all | |
def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True): | |
save_path = '_saved_runs.csv' | |
filters = {} | |
df = pd.DataFrame() | |
# Load the last saved runs so that we only need to update the new ones | |
if use_cache and os.path.exists(save_path): | |
df = pd.read_csv(save_path) | |
df['created_at'] = pd.to_datetime(df['created_at']) | |
df['last_event_at'] = pd.to_datetime(df['last_event_at']) | |
timestamp_str = df['last_event_at'].max().isoformat() | |
filters.update({'updated_at': {'$gte': timestamp_str}}) | |
progress = st.progress(0, text='Loading data') | |
runs = api.runs(path, filters=filters) | |
run_data = [] | |
n_events = 0 | |
for i, run in enumerate(tqdm.tqdm(runs, total=len(runs))): | |
num_steps = run.summary.get('_step',0) | |
if num_steps<min_steps: | |
continue | |
n_events += num_steps | |
prog_msg = f'Loading data {i/len(runs)*100:.0f}%, (total {n_events:,.0f} events)' | |
progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`') | |
run_data.append(run) | |
progress.empty() | |
df_new = pd.DataFrame([{k: func(run) for k, func in EXTRACTORS.items()} for run in tqdm.tqdm(run_data, total=len(run_data))]) | |
df = pd.concat([df, df_new], ignore_index=True) | |
df['duration'] = (df.last_event_at - df.created_at).round('s') | |
df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown') | |
df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS] | |
# Drop events that are not related to validator queries | |
df.dropna(subset='query', inplace=True) | |
print(df.completions.apply(type).value_counts()) | |
# Assumes completions is in the frame | |
df['completions'] = df['completions'].apply(lambda x: x if isinstance(x, list) else eval(x)) | |
df['completion_words'] = df.completions.apply(lambda x: sum([len(xx.split()) for xx in x]) if isinstance(x, list) else 0) | |
df['validator_words'] = df.apply(lambda x: len(str(x.query).split()) + len(str(x.challenge).split()) + len(str(x.reference).split()), axis=1 ) | |
df.to_csv(save_path, index=False) | |
return df | |
def normalize_rewards(df, turn=0, percentile=0.98): | |
top_reward_stats = df.loc[df.turn==turn].astype({'rewards':float}).groupby('task').rewards.quantile(percentile) | |
df['best_reward'] = df.task.map(top_reward_stats) | |
df['normalized_rewards'] = df['rewards'].astype(float) / df['best_reward'] | |
return df | |
def download_runs(time, df_vali): | |
pbar = tqdm.tqdm(df_vali.index, total=len(df_vali)) | |
progress = st.progress(0, text='Loading data') | |
for i, idx in enumerate(pbar): | |
row = df_vali.loc[idx] | |
prog_msg = f'Downloading data {i/len(df_vali)*100:.0f}%' | |
progress.progress(i/len(df_vali), text=f'{prog_msg}... **downloading** `{os.path.join(*row.run_id)}`') | |
save_path = f'data/wandb/{row.run_id}.parquet' | |
if os.path.exists(save_path): | |
pbar.set_description(f'>> Skipping {row.run_id!r} because file {save_path!r} already exists') | |
continue | |
try: | |
pbar.set_description(f'* Downloading run {row.run_id!r}', flush=True) | |
run = api.run(row.run_path) | |
# By default we just download a subset of events (500 most recent) | |
df = run.history() | |
df.to_parquet(save_path) | |
except KeyboardInterrupt: | |
break | |
except Exception as e: | |
pbar.set_description(f'- Something went wrong with {row.run_id!r}: {print_exc()}\n') | |
progress.empty() | |
def get_productivity(df_runs): | |
total_duration = df_runs.last_event_at.max() - df_runs.created_at.min() | |
total_steps = df_runs.num_steps.sum() | |
total_completions = (df_runs.num_steps*df_runs.sample_size).sum() | |
total_completion_words = (df_runs.num_steps*df_runs.completion_words).sum() | |
total_completion_tokens = round(total_completion_words/0.75) | |
total_validator_words = (df_runs.num_steps*df_runs.apply(lambda x: len(str(x.query).split()) + len(str(x.challenge).split()) + len(str(x.reference).split()), axis=1 )).sum() | |
total_validator_tokens = round(total_validator_words/0.75) | |
total_dataset_tokens = total_completion_tokens + total_validator_tokens | |
return { | |
'duration':total_duration, | |
'total_events':total_steps, | |
'total_completions':total_completions, | |
'total_completion_tokens':total_completion_tokens, | |
'total_validator_tokens':total_validator_tokens, | |
'total_tokens':total_dataset_tokens, | |
} | |
def get_reward_stats(df, exclude_multiturn=True, freq='1D', remove_zero_rewards=True, agg='mean', date_min='2024-01-22', date_max='2024-06-25'): | |
df = df.loc[df._timestamp.between(pd.Timestamp(date_min), pd.Timestamp(date_max))] | |
if exclude_multiturn: | |
df = df.loc[df.turn == 0] | |
if remove_zero_rewards: | |
df = df.loc[df.rewards > 0] | |
groups = ['run_id',pd.Grouper(key='_timestamp',freq=freq),'task'] | |
return df.groupby(groups).agg({'rewards':agg, 'normalized_rewards':agg}) | |
def get_release_dates(): | |
release_dates = pd.DataFrame([ | |
{'version': '1.0.0', 'release_date': pd.Timestamp(month=1, day=22, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':['qa','summarization']}, | |
{'version': '1.0.1', 'release_date': pd.Timestamp(month=1, day=22, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, | |
{'version': '1.0.2', 'release_date': pd.Timestamp(month=1, day=24, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':['qa','summarization']}, | |
{'version': '1.0.3', 'release_date': pd.Timestamp(month=2, day=14, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, | |
{'version': '1.0.4', 'release_date': pd.Timestamp(month=2, day=15, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, | |
{'version': '1.1.0', 'release_date': pd.Timestamp(month=2, day=21, year=2024), 'note': 'decay scores', 'model': 'zephyr', 'tasks_affected':['date_qa','math']}, | |
{'version': '1.1.1', 'release_date': pd.Timestamp(month=2, day=28, year=2024), 'note': 'reduce penalty weight', 'model': 'zephyr', 'tasks_affected':['date_qa','qa','summarization']}, | |
{'version': '1.1.2', 'release_date': pd.Timestamp(month=2, day=29, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, | |
{'version': '1.1.3', 'release_date': pd.Timestamp(month=3, day=11, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, | |
{'version': '1.2.0', 'release_date': pd.Timestamp(month=3, day=19, year=2024), 'note': 'vllm', 'model': 'zephyr', 'tasks_affected':[]}, | |
{'version': '1.3.0', 'release_date': pd.Timestamp(month=3, day=27, year=2024), 'note': '', 'model': 'solar', 'tasks_affected':['all','math']}, | |
{'version': '2.0.0', 'release_date': pd.Timestamp(month=4, day=4, year=2024), 'note': 'streaming', 'model': 'solar', 'tasks_affected':['math','qa','summarization']}, | |
{'version': '2.1.0', 'release_date': pd.Timestamp(month=4, day=18, year=2024), 'note': 'chattensor prompt', 'model': 'solar', 'tasks_affected':['generic']}, | |
{'version': '2.2.0', 'release_date': pd.Timestamp(month=5, day=1, year=2024), 'note': 'multiturn + paraphrase', 'model': 'solar', 'tasks_affected':['sentiment','translation','math']}, | |
{'version': '2.3.0', 'release_date': pd.Timestamp(month=5, day=20, year=2024), 'note': 'llama + freeform date', 'model': 'llama', 'tasks_affected':['all','date_qa']}, | |
{'version': '2.3.1', 'release_date': pd.Timestamp(month=5, day=21, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':['date_qa']}, | |
{'version': '2.4.0', 'release_date': pd.Timestamp(month=6, day=5, year=2024), 'note': 'streaming penalty', 'model': 'llama', 'tasks_affected':[]}, | |
{'version': '2.4.1', 'release_date': pd.Timestamp(month=6, day=6, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':[]}, | |
{'version': '2.4.2', 'release_date': pd.Timestamp(month=6, day=7, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':[]}, | |
{'version': '2.4.2', 'release_date': pd.Timestamp(month=6, day=7, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':[]}, | |
{'version': '2.5.0', 'release_date': pd.Timestamp(month=6, day=18, year=2024), 'note': 'reduce multiturn', 'model': 'llama', 'tasks_affected':['translation','sentiment']}, | |
{'version': '2.5.1', 'release_date': pd.Timestamp(month=6, day=25, year=2024), 'note': 'reduce timeout', 'model': 'llama', 'tasks_affected':[]}, | |
]) | |
return release_dates | |
def plot_reward_trends(df_stats, task='qa', window=14, col='normalized_reward', annotate=False, task_label='Question answering'): | |
stats = df_stats.reset_index() | |
release_dates = get_release_dates() | |
stats_task = stats.loc[(stats.task == task)].sort_values(by='_timestamp') | |
stats_task['rewards_ma'] = stats_task[col].rolling(window, min_periods=0).mean() | |
fig = px.area(stats_task, | |
x='_timestamp', y='rewards_ma', | |
title=f'Reward Trend for {task_label} Task', | |
labels={'rewards_ma': f'Rewards [{window} day avg.]','_timestamp':''}, | |
width=800,height=600, | |
) | |
if not annotate: | |
return fig | |
# Add annotations based on relevant releases | |
for idx, row in release_dates.iterrows(): | |
line_color = 'grey' | |
if task in row['tasks_affected']: | |
line_color='red' | |
elif 'all' not in row['tasks_affected']: | |
line_color='blue' | |
# TODO add annotation or something | |
fig.add_vline(row['release_date'], line_color=line_color, opacity=0.6, line_dash='dot', line_width=1)#, annotation_text=str(v)) | |
return fig | |
def get_task_counts(df_runs, df_events): | |
# Get mapping from run id to prompting repo version | |
run_to_version = df_runs.set_index('run_id').version.to_dict() | |
df_events['version'] = df_events.run_id.map(run_to_version) | |
def version_to_spec(version): | |
major, minor, patch = version.split('.') | |
return 10_000 * major + 100 * minor + patch | |
def get_closest_prev_version(version, my_versions): | |
ref_spec = version_to_spec(version) | |
my_specs = list(map(version_to_spec, my_versions)) | |
match = my_specs[0] | |
for spec in my_specs[1:]: | |
if spec>ref_spec: | |
break | |
match = spec | |
return my_versions[my_specs.index(match)] | |
# Now estimate the distribution of tasks for each version using the event data | |
task_rate = df_events.groupby('version').task.value_counts(normalize=True).unstack().fillna(0) | |
# Impute missing versions | |
for v in sorted(df_runs.version.unique()): | |
if v not in task_rate.index: | |
prev_version = get_closest_prev_version(v, list(task_rate.index)) | |
print(f'Imputing version {v} with task rate from closes previous version {prev_version!r}') | |
task_rate.loc[v] = task_rate.loc[prev_version] | |
# get esimated number of each task generated in every run using summary dataframe | |
task_counts = df_runs.set_index('created_at').sort_index().apply(lambda x: round(task_rate.loc[x.version]*x.num_steps), axis=1).cumsum() | |
return task_counts | |
def load_state_vars(username=USERNAME, percentile=0.95): | |
UPDATE_INTERVAL = 600 | |
df_runs = build_data(time.time()//UPDATE_INTERVAL, use_cache=True) | |
df_runs = df_runs.loc[df_runs.netuid.isin([1,61,102])] | |
st.toast(f'Loaded {len(df_runs)} runs') | |
df_vali = df_runs.loc[df_runs.username == username] | |
download_runs(time.time()//UPDATE_INTERVAL, df_vali) | |
df_events = load_downloaded_runs(time.time()//UPDATE_INTERVAL) | |
df_events = normalize_rewards(df_events, percentile=percentile) | |
yesterday = pd.Timestamp.now() - pd.Timedelta('1d') | |
runs_alive_24h_ago = (df_runs.last_event_at > yesterday) | |
df_runs_24h = df_runs.loc[runs_alive_24h_ago] | |
# weight factor indicates the fraction of events that happened within the last 24 hour. | |
fraction = 1 - (yesterday - df_runs_24h.created_at) / (pd.Timestamp.now()- df_runs_24h.created_at) | |
df_runs_24h['fraction'] = fraction.clip(0,1) | |
df_runs_24h['num_steps'] *= fraction.clip(0,1) | |
df_task_counts = get_task_counts(df_runs, df_events) | |
df_m = get_metagraph(time.time()//UPDATE_INTERVAL) | |
return { | |
'df_runs': df_runs, | |
'df_runs_24h': df_runs_24h, | |
'df_vali': df_vali, | |
'df_events': df_events, | |
'metagraph': df_m, | |
'df_task_counts': df_task_counts | |
} | |
if __name__ == '__main__': | |
pass | |