File size: 18,649 Bytes
f03aa8c
 
 
864cff1
f03aa8c
864cff1
f03aa8c
 
 
864cff1
f03aa8c
 
 
 
 
 
 
 
 
 
864cff1
f03aa8c
 
864cff1
 
f03aa8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864cff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03aa8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864cff1
f03aa8c
 
 
 
 
 
 
 
 
 
 
 
864cff1
 
 
 
 
 
 
 
 
 
f03aa8c
864cff1
f03aa8c
 
864cff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ef57d
 
 
 
 
864cff1
07ef57d
864cff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03aa8c
 
 
864cff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03aa8c
 
 
 
864cff1
 
 
 
f03aa8c
864cff1
f03aa8c
 
 
 
 
07ef57d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import os
import tqdm
import time
import glob
import wandb
from traceback import print_exc
import streamlit as st
import pandas as pd
import bittensor as bt
import plotly.express as px


# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
# TODO: Store relevant wandb data in a database for faster access


MIN_STEPS = 10 # minimum number of steps in wandb run in order to be worth analyzing
NETUID = 1
BASE_PATH = 'macrocosmos/prompting-validators'
NETWORK = 'finney'
KEYS = ['_step','_timestamp','task','query','reference','challenge','topic','subtopic']
ABBREV_CHARS = 8
ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
LOCAL_WANDB_PATH = './data/wandb'
USERNAME = 'opentensor'

api = wandb.Api(timeout=600)

IDENTITIES = {
    '5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3': 'opentensor',
    '5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8': 'taostats',
    '5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2': 'foundry',
    '5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN': 'bittensor-guru',
    '5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v': 'roundtable-21',
    '5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux': 'tao-validator',
    '5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB': 'datura',
    '5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed': 'first-tensor',
    '5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x': 'tensorplex',
    '5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp': 'owl-ventures',
    '5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w': 'rizzo',
    '5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf': 'neural-internet'
}

EXTRACTORS = {
    'state': lambda x: x.state,
    'run_id': lambda x: x.id,
    'run_path': lambda x: os.path.join(BASE_PATH, x.id),
    'user': lambda x: x.user.name[:16],
    'username': lambda x: x.user.username[:16],
    'created_at': lambda x: pd.Timestamp(x.created_at),
    'last_event_at': lambda x: pd.Timestamp(x.summary.get('_timestamp'), unit='s'),

    'netuid': lambda x: x.config.get('netuid'),
    'mock': lambda x: x.config.get('neuron').get('mock'),
    'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
    'timeout': lambda x: x.config.get('neuron').get('timeout'),
    'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
    'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),

    # This stuff is from the last logged event
    'num_steps': lambda x: x.summary.get('_step'),
    'runtime': lambda x: x.summary.get('_runtime'),
    'query': lambda x: x.summary.get('query'),
    'challenge': lambda x: x.summary.get('challenge'),
    'reference': lambda x: x.summary.get('reference'),
    'completions': lambda x: x.summary.get('completions'),

    'version': lambda x: x.tags[0],
    'spec_version': lambda x: x.tags[1],
    'vali_hotkey': lambda x: x.tags[2],
    # 'tasks_selected': lambda x: x.tags[3:],

    # System metrics
    'disk_read': lambda x: x.system_metrics.get('system.disk.in'),
    'disk_write': lambda x: x.system_metrics.get('system.disk.out'),
    # Really slow stuff below
    # 'started_at': lambda x: x.metadata.get('startedAt'),
    # 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
    # 'commit': lambda x: x.metadata.get('git').get('commit')
}


def get_leaderboard(df, ntop=10, entity_choice='identity'):

    df = df.loc[df.validator_permit==False]
    df.index = range(df.shape[0])
    return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop)

@st.cache_data()
def get_metagraph(time):
    print(f'Loading metagraph with time {time}')
    subtensor = bt.subtensor(network=NETWORK)
    m = subtensor.metagraph(netuid=NETUID)
    meta_cols = ['I','stake','trust','validator_trust','validator_permit','C','R','E','dividends','last_update']

    df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols})
    df_m['uid'] = range(m.n.item())
    df_m['hotkey'] = list(map(lambda a: a.hotkey, m.axons))
    df_m['coldkey'] = list(map(lambda a: a.coldkey, m.axons))
    df_m['ip'] = list(map(lambda a: a.ip, m.axons))
    df_m['port'] = list(map(lambda a: a.port, m.axons))
    df_m['coldkey'] = df_m.coldkey.str[:ABBREV_CHARS]
    df_m['hotkey'] = df_m.hotkey.str[:ABBREV_CHARS]
    df_m['identity'] = df_m.apply(lambda x: f'{x.hotkey} @ uid {x.uid}', axis=1)
    return df_m


@st.cache_data(show_spinner=False)
def load_downloaded_runs(time, cols=KEYS):

    list_cols = ['rewards','uids']
    extra_cols = ['turn']
    df_all = pd.DataFrame()

    progress = st.progress(0, text='Loading downloaded data')
    paths = glob.glob(os.path.join(LOCAL_WANDB_PATH,'*.parquet'))
    for i, path in enumerate(paths):
        run_id = path.split('/')[-1].split('.')[0]
        frame = pd.read_parquet(path).dropna(subset=cols)
        frame._timestamp = frame._timestamp.apply(pd.to_datetime, unit='s')
        # handle missing extra cols such as turn which depend on the version of the codebase
        found_extra_cols = [c for c in frame.columns if c in extra_cols]
        df_long = frame[cols+list_cols+found_extra_cols].explode(list_cols)

        prog_msg = f'Downloading data {i/len(paths)*100:.0f}%'
        progress.progress(i/len(paths), text=f'{prog_msg}... **downloading** `{run_id}`')

        df_all = pd.concat([df_all, df_long.assign(run_id=run_id)], ignore_index=True)

    progress.empty()

    # Ensure we have consistent naming schema for tasks
    task_mapping = {
        'date-based question answering': 'date_qa',
        'question-answering': 'qa',
    }
    df_all.task = df_all.task.apply(lambda x: task_mapping.get(x, x))

    # Runs which do not have a turn field are imputed to be turn zero (single turn)
    df_all.turn.fillna(0, inplace=True)

    df_all.sort_values(by=['_timestamp'], inplace=True)

    return df_all


@st.cache_data(show_spinner=False)
def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):

    save_path = '_saved_runs.csv'
    filters = {}
    df = pd.DataFrame()
    # Load the last saved runs so that we only need to update the new ones
    if use_cache and os.path.exists(save_path):
        df = pd.read_csv(save_path)
        df['created_at'] = pd.to_datetime(df['created_at'])
        df['last_event_at'] = pd.to_datetime(df['last_event_at'])

        timestamp_str = df['last_event_at'].max().isoformat()
        filters.update({'updated_at': {'$gte': timestamp_str}})

    progress = st.progress(0, text='Loading data')

    runs = api.runs(path, filters=filters)

    run_data = []
    n_events = 0
    for i, run in enumerate(tqdm.tqdm(runs, total=len(runs))):
        num_steps = run.summary.get('_step',0)
        if num_steps<min_steps:
            continue
        n_events += num_steps
        prog_msg = f'Loading data {i/len(runs)*100:.0f}%, (total {n_events:,.0f} events)'
        progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')

        run_data.append(run)

    progress.empty()

    df_new = pd.DataFrame([{k: func(run) for k, func in EXTRACTORS.items()} for run in tqdm.tqdm(run_data, total=len(run_data))])
    df = pd.concat([df, df_new], ignore_index=True)
    df['duration'] = (df.last_event_at - df.created_at).round('s')
    df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown')
    df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS]

    # Drop events that are not related to validator queries
    df.dropna(subset='query', inplace=True)

    print(df.completions.apply(type).value_counts())
    # Assumes completions is in the frame
    df['completions'] = df['completions'].apply(lambda x: x if isinstance(x, list) else eval(x))

    df['completion_words'] = df.completions.apply(lambda x: sum([len(xx.split()) for xx in x]) if isinstance(x, list) else 0)
    df['validator_words'] = df.apply(lambda x: len(str(x.query).split()) + len(str(x.challenge).split()) + len(str(x.reference).split()), axis=1 )

    df.to_csv(save_path, index=False)

    return df

@st.cache_data()
def normalize_rewards(df, turn=0, percentile=0.98):
    top_reward_stats = df.loc[df.turn==turn].astype({'rewards':float}).groupby('task').rewards.quantile(percentile)

    df['best_reward'] = df.task.map(top_reward_stats)
    df['normalized_rewards'] = df['rewards'].astype(float) / df['best_reward']
    return df

@st.cache_data(show_spinner=False)
def download_runs(time, df_vali):

    pbar = tqdm.tqdm(df_vali.index, total=len(df_vali))

    progress = st.progress(0, text='Loading data')

    for i, idx in enumerate(pbar):
        row = df_vali.loc[idx]

        prog_msg = f'Downloading data {i/len(df_vali)*100:.0f}%'
        progress.progress(i/len(df_vali), text=f'{prog_msg}... **downloading** `{os.path.join(*row.run_id)}`')

        save_path = f'data/wandb/{row.run_id}.parquet'
        if os.path.exists(save_path):
            pbar.set_description(f'>> Skipping {row.run_id!r} because file {save_path!r} already exists')
            continue

        try:
            pbar.set_description(f'* Downloading run {row.run_id!r}', flush=True)
            run = api.run(row.run_path)

            # By default we just download a subset of events (500 most recent)
            df = run.history()
            df.to_parquet(save_path)
        except KeyboardInterrupt:
            break
        except Exception as e:
            pbar.set_description(f'- Something went wrong with {row.run_id!r}: {print_exc()}\n')

    progress.empty()


def get_productivity(df_runs):

    total_duration = df_runs.last_event_at.max() - df_runs.created_at.min()
    total_steps = df_runs.num_steps.sum()
    total_completions = (df_runs.num_steps*df_runs.sample_size).sum()
    total_completion_words = (df_runs.num_steps*df_runs.completion_words).sum()
    total_completion_tokens = round(total_completion_words/0.75)
    total_validator_words = (df_runs.num_steps*df_runs.apply(lambda x: len(str(x.query).split()) + len(str(x.challenge).split()) + len(str(x.reference).split()), axis=1 )).sum()
    total_validator_tokens = round(total_validator_words/0.75)
    total_dataset_tokens = total_completion_tokens + total_validator_tokens

    return {
        'duration':total_duration,
        'total_events':total_steps,
        'total_completions':total_completions,
        'total_completion_tokens':total_completion_tokens,
        'total_validator_tokens':total_validator_tokens,
        'total_tokens':total_dataset_tokens,
    }

@st.cache_data(show_spinner=False)
def get_reward_stats(df, exclude_multiturn=True, freq='1D', remove_zero_rewards=True, agg='mean', date_min='2024-01-22', date_max='2024-06-25'):

    df = df.loc[df._timestamp.between(pd.Timestamp(date_min), pd.Timestamp(date_max))]
    if exclude_multiturn:
        df = df.loc[df.turn == 0]
    if remove_zero_rewards:
        df = df.loc[df.rewards > 0]

    groups = ['run_id',pd.Grouper(key='_timestamp',freq=freq),'task']
    return df.groupby(groups).agg({'rewards':agg, 'normalized_rewards':agg})

def get_release_dates():
    release_dates = pd.DataFrame([
        {'version': '1.0.0', 'release_date': pd.Timestamp(month=1, day=22, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':['qa','summarization']},
        {'version': '1.0.1', 'release_date': pd.Timestamp(month=1, day=22, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
        {'version': '1.0.2', 'release_date': pd.Timestamp(month=1, day=24, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':['qa','summarization']},
        {'version': '1.0.3', 'release_date': pd.Timestamp(month=2, day=14, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
        {'version': '1.0.4', 'release_date': pd.Timestamp(month=2, day=15, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
        {'version': '1.1.0', 'release_date': pd.Timestamp(month=2, day=21, year=2024), 'note': 'decay scores', 'model': 'zephyr', 'tasks_affected':['date_qa','math']},
        {'version': '1.1.1', 'release_date': pd.Timestamp(month=2, day=28, year=2024), 'note': 'reduce penalty weight', 'model': 'zephyr', 'tasks_affected':['date_qa','qa','summarization']},
        {'version': '1.1.2', 'release_date': pd.Timestamp(month=2, day=29, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
        {'version': '1.1.3', 'release_date': pd.Timestamp(month=3, day=11, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
        {'version': '1.2.0', 'release_date': pd.Timestamp(month=3, day=19, year=2024), 'note': 'vllm', 'model': 'zephyr', 'tasks_affected':[]},
        {'version': '1.3.0', 'release_date': pd.Timestamp(month=3, day=27, year=2024), 'note': '', 'model': 'solar', 'tasks_affected':['all','math']},
        {'version': '2.0.0', 'release_date': pd.Timestamp(month=4, day=4, year=2024),  'note': 'streaming', 'model': 'solar', 'tasks_affected':['math','qa','summarization']},
        {'version': '2.1.0', 'release_date': pd.Timestamp(month=4, day=18, year=2024), 'note': 'chattensor prompt', 'model': 'solar', 'tasks_affected':['generic']},
        {'version': '2.2.0', 'release_date': pd.Timestamp(month=5, day=1, year=2024),  'note': 'multiturn + paraphrase', 'model': 'solar', 'tasks_affected':['sentiment','translation','math']},
        {'version': '2.3.0', 'release_date': pd.Timestamp(month=5, day=20, year=2024), 'note': 'llama + freeform date', 'model': 'llama', 'tasks_affected':['all','date_qa']},
        {'version': '2.3.1', 'release_date': pd.Timestamp(month=5, day=21, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':['date_qa']},
        {'version': '2.4.0', 'release_date': pd.Timestamp(month=6, day=5, year=2024),  'note': 'streaming penalty', 'model': 'llama', 'tasks_affected':[]},
        {'version': '2.4.1', 'release_date': pd.Timestamp(month=6, day=6, year=2024),  'note': '', 'model': 'llama', 'tasks_affected':[]},
        {'version': '2.4.2', 'release_date': pd.Timestamp(month=6, day=7, year=2024),  'note': '', 'model': 'llama', 'tasks_affected':[]},
        {'version': '2.4.2', 'release_date': pd.Timestamp(month=6, day=7, year=2024),  'note': '', 'model': 'llama', 'tasks_affected':[]},
        {'version': '2.5.0', 'release_date': pd.Timestamp(month=6, day=18, year=2024), 'note': 'reduce multiturn', 'model': 'llama', 'tasks_affected':['translation','sentiment']},
        {'version': '2.5.1', 'release_date': pd.Timestamp(month=6, day=25, year=2024), 'note': 'reduce timeout', 'model': 'llama', 'tasks_affected':[]},
    ])
    return release_dates


def plot_reward_trends(df_stats, task='qa', window=14, col='normalized_reward', annotate=False, task_label='Question answering'):

    stats = df_stats.reset_index()
    release_dates = get_release_dates()
    stats_task = stats.loc[(stats.task == task)].sort_values(by='_timestamp')
    stats_task['rewards_ma'] = stats_task[col].rolling(window, min_periods=0).mean()
    fig = px.area(stats_task,
            x='_timestamp', y='rewards_ma',
            title=f'Reward Trend for {task_label} Task',
            labels={'rewards_ma': f'Rewards [{window} day avg.]','_timestamp':''},
            width=800,height=600,
            )

    if not annotate:
        return fig

    # Add annotations based on relevant releases
    for idx, row in release_dates.iterrows():
        line_color = 'grey'
        if task in row['tasks_affected']:
            line_color='red'
        elif 'all' not in row['tasks_affected']:
            line_color='blue'           
        # TODO add annotation or something
        fig.add_vline(row['release_date'], line_color=line_color, opacity=0.6, line_dash='dot', line_width=1)#, annotation_text=str(v))

    return fig

@st.cache_data()
def get_task_counts(df_runs, df_events):
    # Get mapping from run id to prompting repo version 
    run_to_version = df_runs.set_index('run_id').version.to_dict()

    df_events['version'] = df_events.run_id.map(run_to_version)
    
    def version_to_spec(version):
        major, minor, patch = version.split('.')
        return 10_000 * major + 100 * minor + patch
    
    def get_closest_prev_version(version, my_versions):
        
        ref_spec = version_to_spec(version)
        my_specs = list(map(version_to_spec, my_versions))
        
        match = my_specs[0]
        for spec in my_specs[1:]:
            if spec>ref_spec:
                break
            
            match = spec
        
        return my_versions[my_specs.index(match)]
        
    # Now estimate the distribution of tasks for each version using the event data
    task_rate = df_events.groupby('version').task.value_counts(normalize=True).unstack().fillna(0)
    # Impute missing versions
    for v in sorted(df_runs.version.unique()):
        if v not in task_rate.index:
            prev_version = get_closest_prev_version(v, list(task_rate.index))
            print(f'Imputing version {v} with task rate from closes previous version {prev_version!r}')
            task_rate.loc[v] = task_rate.loc[prev_version]
    
    # get esimated number of each task generated in every run using summary dataframe
    task_counts = df_runs.set_index('created_at').sort_index().apply(lambda x: round(task_rate.loc[x.version]*x.num_steps), axis=1).cumsum()
    return task_counts    


def load_state_vars(username=USERNAME, percentile=0.95):

    UPDATE_INTERVAL = 600

    df_runs = build_data(time.time()//UPDATE_INTERVAL, use_cache=True)
    
    df_runs = df_runs.loc[df_runs.netuid.isin([1,61,102])]
    st.toast(f'Loaded {len(df_runs)} runs')

    df_vali = df_runs.loc[df_runs.username == username]

    download_runs(time.time()//UPDATE_INTERVAL, df_vali)

    df_events = load_downloaded_runs(time.time()//UPDATE_INTERVAL)
    df_events = normalize_rewards(df_events, percentile=percentile)

    yesterday = pd.Timestamp.now() - pd.Timedelta('1d')
    runs_alive_24h_ago = (df_runs.last_event_at > yesterday)

    df_runs_24h = df_runs.loc[runs_alive_24h_ago]
    
    # weight factor indicates the fraction of events that happened within the last 24 hour.
    fraction = 1 - (yesterday - df_runs_24h.created_at) / (pd.Timestamp.now()- df_runs_24h.created_at)    
    df_runs_24h['fraction'] = fraction.clip(0,1)
    df_runs_24h['num_steps'] *= fraction.clip(0,1)
    
    df_task_counts = get_task_counts(df_runs, df_events)

    df_m = get_metagraph(time.time()//UPDATE_INTERVAL)

    return {
        'df_runs': df_runs,
        'df_runs_24h': df_runs_24h,
        'df_vali': df_vali,
        'df_events': df_events,
        'metagraph': df_m,
        'df_task_counts': df_task_counts
    }


if __name__ == '__main__':

    pass