steffenc commited on
Commit
864cff1
·
1 Parent(s): f03aa8c
Files changed (3) hide show
  1. app.py +71 -66
  2. requirements.txt +2 -1
  3. utils.py +250 -21
app.py CHANGED
@@ -6,93 +6,99 @@ import plotly.express as px
6
  import utils
7
 
8
  _ = """
9
- Proteins folded (delta 24hr)
10
- Current proteins folding (24hr)
11
- Average time to fold trend
12
- Refolded proteins (group by run id and pdb id and get unique)
13
- Simulation duration distribution
 
 
 
 
 
 
 
 
 
 
 
 
14
  """
15
 
16
- UPDATE_INTERVAL = 3600
17
-
18
-
19
- st.title('Folding Subnet Dashboard')
20
  st.markdown('<br>', unsafe_allow_html=True)
21
 
22
  # reload data periodically
23
- df = utils.build_data(time.time()//UPDATE_INTERVAL)
24
- st.toast(f'Loaded {len(df)} runs')
25
-
26
- # TODO: fix the factor for 24 hours ago
27
- runs_alive_24h_ago = (df.last_event_at > pd.Timestamp.now() - pd.Timedelta('1d'))
28
- df_24h = df.loc[runs_alive_24h_ago]
29
- # correction factor to account for the fact that the data straddles the 24h boundary
30
- # correction factor is based on the fraction of the run which occurred in the last 24h
31
- # factor = (df_24h.last_event_at - pd.Timestamp.now() + pd.Timedelta('1d')) / pd.Timedelta('1d')
32
 
 
 
 
 
 
 
 
33
 
34
  #### ------ PRODUCTIVITY ------
35
 
36
  # Overview of productivity
37
  st.subheader('Productivity overview')
38
- st.info('Productivity metrics show how many proteins have been folded, which is the primary goal of the subnet. Metrics are estimated using weights and biases data combined with heuristics.')
39
 
40
- productivity = utils.get_productivity(df)
41
- productivity_24h = utils.get_productivity(df_24h)
42
 
43
 
44
- m1, m2, m3 = st.columns(3)
45
- m1.metric('Unique proteins folded', f'{productivity.get("unique_folded"):,.0f}', delta=f'{productivity_24h.get("unique_folded"):,.0f} (24h)')
46
- m2.metric('Total proteins folded', f'{productivity.get("total_simulations"):,.0f}', delta=f'{productivity_24h.get("total_simulations"):,.0f} (24h)')
47
- m3.metric('Total simulation steps', f'{productivity.get("total_md_steps"):,.0f}', delta=f'{productivity_24h.get("total_md_steps"):,.0f} (24h)')
 
48
 
49
  st.markdown('<br>', unsafe_allow_html=True)
50
 
51
- time_binned_data = df.set_index('last_event_at').groupby(pd.Grouper(freq='12h'))
52
-
53
- PROD_CHOICES = {
54
- 'Unique proteins folded': 'unique_pdbs',
55
- 'Total simulations': 'total_pdbs',
56
- 'Total simulation steps': 'total_md_steps',
57
- }
58
- prod_choice_label = st.radio('Select productivity metric', list(PROD_CHOICES.keys()), index=0, horizontal=True)
59
- prod_choice = PROD_CHOICES[prod_choice_label]
60
- steps_running_total = time_binned_data[prod_choice].sum().cumsum()
61
  st.plotly_chart(
62
- # add fillgradient to make it easier to see the trend
63
- px.area(steps_running_total, y=prod_choice,
64
- labels={'last_event_at':'', prod_choice: prod_choice_label},
65
- ).update_traces(fill='tozeroy'),
66
  use_container_width=True,
67
  )
68
 
69
  st.markdown('<br>', unsafe_allow_html=True)
70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
- #### ------ THROUGHPUT ------
73
- st.subheader('Throughput overview')
74
-
75
- st.info('Throughput metrics show the total amount of data sent and received by the validators. This is a measure of the network activity and the amount of data that is being processed by the subnet.')
76
-
77
- MEM_UNIT = 'GB' #st.radio('Select memory unit', ['TB','GB', 'MB'], index=0, horizontal=True)
78
 
79
- data_transferred = utils.get_data_transferred(df,unit=MEM_UNIT)
80
- data_transferred_24h = utils.get_data_transferred(df_24h, unit=MEM_UNIT)
81
 
82
- m1, m2, m3 = st.columns(3)
83
- m1.metric(f'Total sent data ({MEM_UNIT})', f'{data_transferred.get("sent"):,.0f}', delta=f'{data_transferred_24h.get("sent"):,.0f} (24h)')
84
- m2.metric(f'Total received data ({MEM_UNIT})', f'{data_transferred.get("received"):,.0f}', delta=f'{data_transferred_24h.get("received"):,.0f} (24h)')
85
- m3.metric(f'Total transferred data ({MEM_UNIT})', f'{data_transferred.get("total"):,.0f}', delta=f'{data_transferred_24h.get("total"):,.0f} (24h)')
86
 
87
 
88
- IO_CHOICES = {'total_data_sent':'Sent', 'total_data_received':'Received'}
89
- io_running_total = time_binned_data[list(IO_CHOICES.keys())].sum().rename(columns=IO_CHOICES).cumsum().melt(ignore_index=False)
90
- io_running_total['value'] = io_running_total['value'].apply(utils.convert_unit, args=(utils.BASE_UNITS, MEM_UNIT))
91
 
92
  st.plotly_chart(
93
- px.area(io_running_total, y='value', color='variable',
94
- labels={'last_event_at':'', 'value': f'Data transferred ({MEM_UNIT})', 'variable':'Direction'},
95
- ),
96
  use_container_width=True,
97
  )
98
 
@@ -107,7 +113,6 @@ m1, m2 = st.columns(2)
107
  ntop = m1.slider('Number of top miners to display', value=10, min_value=3, max_value=50, step=1)
108
  entity_choice = m2.radio('Select entity', utils.ENTITY_CHOICES, index=0, horizontal=True)
109
 
110
- df_m = utils.get_metagraph(time.time()//UPDATE_INTERVAL)
111
  df_miners = utils.get_leaderboard(df_m, ntop=ntop, entity_choice=entity_choice)
112
 
113
  # hide colorbar and don't show y axis
@@ -128,13 +133,13 @@ st.markdown('<br>', unsafe_allow_html=True)
128
  #### ------ LOGGED RUNS ------
129
 
130
  st.subheader('Logged runs')
131
- st.info('The timeline shows the creation and last event time of each run.')
132
- st.plotly_chart(
133
- px.timeline(df, x_start='created_at', x_end='last_event_at', y='username', color='state',
134
- labels={'created_at':'Created at', 'last_event_at':'Last event at', 'username':''},
135
- ),
136
- use_container_width=True
137
- )
138
 
139
  with st.expander('Show raw run data'):
140
- st.dataframe(df)
 
6
  import utils
7
 
8
  _ = """
9
+ [x] Define KPIs: Number of steps, number of completions and total generated tokens
10
+ [x] Data pipeline I: pull run summary data from wandb
11
+ [x] Data pipeline II: pull run event data from wandb (max 500 steps per run)
12
+ [x] Task trends: Number of tasks over time
13
+ [x] Reward trends I: average reward over time, by task
14
+ [x] Reward trends II: average nonzero reward over time, by task
15
+ [x] Reward trends III: average nonzero normalized reward over time, by task
16
+ [x] Explain trends: show release dates to indicate sudden changes
17
+ [ ] Miner trends: associate uids with miner rankings and plot top miner rewards vs network avg
18
+ [ ] Baseline rewards I: compare the network trends with baseline model gpt-3.5-turbo
19
+ [ ] Baseline rewards II: compare the network trends with baseline model gpt-4o
20
+ [ ] Baseline rewards III: compare the network trends with baseline model zephyr
21
+ [ ] Baseline rewards IV: compare the network trends with baseline model solar
22
+ [ ] Baseline rewards V: compare the network trends with baseline model llama3 8B
23
+ [ ] Baseline rewards VI: compare the network trends with baseline model llama3 70B
24
+
25
+ ---------
26
  """
27
 
28
+ st.title('Prompting Subnet Dashboard')
 
 
 
29
  st.markdown('<br>', unsafe_allow_html=True)
30
 
31
  # reload data periodically
32
+ state_vars = utils.load_state_vars()
 
 
 
 
 
 
 
 
33
 
34
+ df_runs = state_vars['df_runs']
35
+ df_runs_24h = state_vars['df_runs_24h']
36
+ df_vali = state_vars['df_vali']
37
+ df_events = state_vars['df_events']
38
+ df_task_counts = state_vars['df_task_counts']
39
+ df_m = state_vars['metagraph']
40
+ st.toast(f'Loaded {len(df_runs)} runs')
41
 
42
  #### ------ PRODUCTIVITY ------
43
 
44
  # Overview of productivity
45
  st.subheader('Productivity overview')
46
+ st.info('Productivity metrics show how much data has been created by subnet 1')
47
 
48
+ productivity = utils.get_productivity(df_runs)
49
+ productivity_24h = utils.get_productivity(df_runs_24h)
50
 
51
 
52
+ m1, m2, m3, m4 = st.columns(4)
53
+ m1.metric('Competition duration', f'{productivity.get("duration").days} days')
54
+ m2.metric('Total events', f'{productivity.get("total_events")/1e6:,.2f}M', delta=f'{productivity_24h.get("total_events")/1e6:,.2f}M (24h)')
55
+ m3.metric('Total completions', f'{productivity.get("total_completions")/1e9:,.2f}B', delta=f'{productivity_24h.get("total_completions")/1e9:,.2f}B (24h)')
56
+ m4.metric('Total dataset tokens', f'{productivity.get("total_tokens")/1e9:,.2f}B', delta=f'{productivity_24h.get("total_tokens")/1e9:,.2f}B (24h)')
57
 
58
  st.markdown('<br>', unsafe_allow_html=True)
59
 
 
 
 
 
 
 
 
 
 
 
60
  st.plotly_chart(
61
+ px.area(df_task_counts, y=df_task_counts.columns, title='Data Created by Task',
62
+ labels={'created_at':'','value':'Total data created'},
63
+ ),
 
64
  use_container_width=True,
65
  )
66
 
67
  st.markdown('<br>', unsafe_allow_html=True)
68
 
69
+ # Overview of productivity
70
+ st.subheader('Improvement overview')
71
+ st.info('Subnet 1 is an endlessly improving system, where miners compete to produce high quality responses to a range of challenging tasks')
72
+
73
+
74
+ TASK_CHOICES = {
75
+ 'Question answering': 'qa',
76
+ 'Summarization': 'summarization',
77
+ 'Date-based question answering': 'date_qa',
78
+ 'Math': 'math',
79
+ 'Generic instruction': 'generic',
80
+ 'Sentiment analysis': 'sentiment',
81
+ 'Translation': 'translation',
82
+ }
83
 
84
+ with st.expander('Advanced settings'):
85
+ c1, c2 = st.columns(2)
86
+ remove_zero_rewards = c1.checkbox('Exclude zero rewards', value=True, help='Remove completions which scored zero rewards (failed responses, timeouts etc.)')
87
+ normalize_rewards = c1.checkbox('Normalize rewards', value=True, help='Scale rewards for each task to a maximium value of 1 (approx)')
88
+ show_releases = c1.checkbox('Show releases', value=False, help='Add annotations which indicate when major releases may have impacted network performance')
89
+ moving_avg_window = c2.slider('Moving avg. window', min_value=1, max_value=30, value=14, help='Window size to smooth data and make long term trends clearer')
90
 
91
+ reward_col = 'normalized_rewards' if normalize_rewards else 'rewards'
 
92
 
93
+ df_stats = utils.get_reward_stats(df_events, exclude_multiturn=True, freq='1D', remove_zero_rewards=remove_zero_rewards)
 
 
 
94
 
95
 
96
+ task_choice_label = st.radio('Select task', list(TASK_CHOICES.keys()), index=0, horizontal=True)
97
+ task_choice = TASK_CHOICES[task_choice_label]
 
98
 
99
  st.plotly_chart(
100
+ # add fillgradient to make it easier to see the trend
101
+ utils.plot_reward_trends(df_stats, task=task_choice, window=moving_avg_window, col=reward_col, annotate=show_releases, task_label=task_choice_label),
 
102
  use_container_width=True,
103
  )
104
 
 
113
  ntop = m1.slider('Number of top miners to display', value=10, min_value=3, max_value=50, step=1)
114
  entity_choice = m2.radio('Select entity', utils.ENTITY_CHOICES, index=0, horizontal=True)
115
 
 
116
  df_miners = utils.get_leaderboard(df_m, ntop=ntop, entity_choice=entity_choice)
117
 
118
  # hide colorbar and don't show y axis
 
133
  #### ------ LOGGED RUNS ------
134
 
135
  st.subheader('Logged runs')
136
+ # st.info('The timeline shows the creation and last event time of each run.')
137
+ # st.plotly_chart(
138
+ # px.timeline(df_runs, x_start='created_at', x_end='last_event_at', y='user', color='state',
139
+ # labels={'created_at':'Created at', 'last_event_at':'Last event at', 'username':''},
140
+ # ),
141
+ # use_container_width=True
142
+ # )
143
 
144
  with st.expander('Show raw run data'):
145
+ st.dataframe(df_runs)
requirements.txt CHANGED
@@ -2,4 +2,5 @@ git+https://github.com/macrocosm-os/prompting.git
2
  aiohttp
3
  deprecated
4
  aiohttp_apispec>=2.2.3
5
- aiofiles
 
 
2
  aiohttp
3
  deprecated
4
  aiohttp_apispec>=2.2.3
5
+ aiofiles
6
+ streamlit
utils.py CHANGED
@@ -1,10 +1,13 @@
1
  import os
2
  import tqdm
3
  import time
 
4
  import wandb
 
5
  import streamlit as st
6
  import pandas as pd
7
  import bittensor as bt
 
8
 
9
 
10
  # TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
@@ -12,14 +15,14 @@ import bittensor as bt
12
 
13
 
14
  MIN_STEPS = 10 # minimum number of steps in wandb run in order to be worth analyzing
15
- MAX_RUNS = 100#0000
16
  NETUID = 1
17
  BASE_PATH = 'macrocosmos/prompting-validators'
18
  NETWORK = 'finney'
19
- KEYS = None
20
  ABBREV_CHARS = 8
21
  ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
22
-
 
23
 
24
  api = wandb.Api(timeout=600)
25
 
@@ -102,17 +105,44 @@ def get_metagraph(time):
102
  return df_m
103
 
104
 
105
- @st.cache_data()
106
- def load_run(run_path, keys=KEYS):
107
-
108
- print('Loading run:', run_path)
109
- run = api.run(run_path)
110
- df = pd.DataFrame(list(run.scan_history(keys=keys)))
111
- for col in ['updated_at', 'created_at']:
112
- if col in df.columns:
113
- df[col] = pd.to_datetime(df[col])
114
- print(f'+ Loaded {len(df)} records')
115
- return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
  @st.cache_data(show_spinner=False)
118
  def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
@@ -140,7 +170,7 @@ def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=Tr
140
  if num_steps<min_steps:
141
  continue
142
  n_events += num_steps
143
- prog_msg = f'Loading data {i/len(runs)*100:.0f}%, {n_events:,.0f} events)'
144
  progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
145
 
146
  run_data.append(run)
@@ -153,23 +183,222 @@ def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=Tr
153
  df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown')
154
  df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS]
155
 
 
 
 
 
 
 
 
 
 
 
156
  df.to_csv(save_path, index=False)
 
157
  return df
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
- def load_state_vars():
161
  UPDATE_INTERVAL = 600
162
 
163
- df = build_data(time.time()//UPDATE_INTERVAL)
164
- runs_alive_24h_ago = (df.last_event_at > pd.Timestamp.now() - pd.Timedelta('1d'))
165
- df_24h = df.loc[runs_alive_24h_ago]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
 
167
  df_m = get_metagraph(time.time()//UPDATE_INTERVAL)
168
 
169
  return {
170
- 'dataframe': df,
171
- 'dataframe_24h': df_24h,
 
 
172
  'metagraph': df_m,
 
173
  }
174
 
175
 
 
1
  import os
2
  import tqdm
3
  import time
4
+ import glob
5
  import wandb
6
+ from traceback import print_exc
7
  import streamlit as st
8
  import pandas as pd
9
  import bittensor as bt
10
+ import plotly.express as px
11
 
12
 
13
  # TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
 
15
 
16
 
17
  MIN_STEPS = 10 # minimum number of steps in wandb run in order to be worth analyzing
 
18
  NETUID = 1
19
  BASE_PATH = 'macrocosmos/prompting-validators'
20
  NETWORK = 'finney'
21
+ KEYS = ['_step','_timestamp','task','query','reference','challenge','topic','subtopic']
22
  ABBREV_CHARS = 8
23
  ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
24
+ LOCAL_WANDB_PATH = './data/wandb'
25
+ USERNAME = 'opentensor'
26
 
27
  api = wandb.Api(timeout=600)
28
 
 
105
  return df_m
106
 
107
 
108
+ @st.cache_data(show_spinner=False)
109
+ def load_downloaded_runs(time, cols=KEYS):
110
+
111
+ list_cols = ['rewards','uids']
112
+ extra_cols = ['turn']
113
+ df_all = pd.DataFrame()
114
+
115
+ progress = st.progress(0, text='Loading downloaded data')
116
+ paths = glob.glob(os.path.join(LOCAL_WANDB_PATH,'*.parquet'))
117
+ for i, path in enumerate(paths):
118
+ run_id = path.split('/')[-1].split('.')[0]
119
+ frame = pd.read_parquet(path).dropna(subset=cols)
120
+ frame._timestamp = frame._timestamp.apply(pd.to_datetime, unit='s')
121
+ # handle missing extra cols such as turn which depend on the version of the codebase
122
+ found_extra_cols = [c for c in frame.columns if c in extra_cols]
123
+ df_long = frame[cols+list_cols+found_extra_cols].explode(list_cols)
124
+
125
+ prog_msg = f'Downloading data {i/len(paths)*100:.0f}%'
126
+ progress.progress(i/len(paths), text=f'{prog_msg}... **downloading** `{run_id}`')
127
+
128
+ df_all = pd.concat([df_all, df_long.assign(run_id=run_id)], ignore_index=True)
129
+
130
+ progress.empty()
131
+
132
+ # Ensure we have consistent naming schema for tasks
133
+ task_mapping = {
134
+ 'date-based question answering': 'date_qa',
135
+ 'question-answering': 'qa',
136
+ }
137
+ df_all.task = df_all.task.apply(lambda x: task_mapping.get(x, x))
138
+
139
+ # Runs which do not have a turn field are imputed to be turn zero (single turn)
140
+ df_all.turn.fillna(0, inplace=True)
141
+
142
+ df_all.sort_values(by=['_timestamp'], inplace=True)
143
+
144
+ return df_all
145
+
146
 
147
  @st.cache_data(show_spinner=False)
148
  def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
 
170
  if num_steps<min_steps:
171
  continue
172
  n_events += num_steps
173
+ prog_msg = f'Loading data {i/len(runs)*100:.0f}%, (total {n_events:,.0f} events)'
174
  progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
175
 
176
  run_data.append(run)
 
183
  df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown')
184
  df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS]
185
 
186
+ # Drop events that are not related to validator queries
187
+ df.dropna(subset='query', inplace=True)
188
+
189
+ print(df.completions.apply(type).value_counts())
190
+ # Assumes completions is in the frame
191
+ df['completions'] = df['completions'].apply(lambda x: x if isinstance(x, list) else eval(x))
192
+
193
+ df['completion_words'] = df.completions.apply(lambda x: sum([len(xx.split()) for xx in x]) if isinstance(x, list) else 0)
194
+ df['validator_words'] = df.apply(lambda x: len(str(x.query).split()) + len(str(x.challenge).split()) + len(str(x.reference).split()), axis=1 )
195
+
196
  df.to_csv(save_path, index=False)
197
+
198
  return df
199
 
200
+ @st.cache_data()
201
+ def normalize_rewards(df, turn=0, percentile=0.98):
202
+ top_reward_stats = df.loc[df.turn==turn].astype({'rewards':float}).groupby('task').rewards.quantile(percentile)
203
+
204
+ df['best_reward'] = df.task.map(top_reward_stats)
205
+ df['normalized_rewards'] = df['rewards'].astype(float) / df['best_reward']
206
+ return df
207
+
208
+ @st.cache_data(show_spinner=False)
209
+ def download_runs(time, df_vali):
210
+
211
+ pbar = tqdm.tqdm(df_vali.index, total=len(df_vali))
212
+
213
+ progress = st.progress(0, text='Loading data')
214
+
215
+ for i, idx in enumerate(pbar):
216
+ row = df_vali.loc[idx]
217
+
218
+ prog_msg = f'Downloading data {i/len(df_vali)*100:.0f}%'
219
+ progress.progress(i/len(df_vali), text=f'{prog_msg}... **downloading** `{os.path.join(*row.run_id)}`')
220
+
221
+ save_path = f'data/wandb/{row.run_id}.parquet'
222
+ if os.path.exists(save_path):
223
+ pbar.set_description(f'>> Skipping {row.run_id!r} because file {save_path!r} already exists')
224
+ continue
225
+
226
+ try:
227
+ pbar.set_description(f'* Downloading run {row.run_id!r}', flush=True)
228
+ run = api.run(row.run_path)
229
+
230
+ # By default we just download a subset of events (500 most recent)
231
+ df = run.history()
232
+ df.to_parquet(save_path)
233
+ except KeyboardInterrupt:
234
+ break
235
+ except Exception as e:
236
+ pbar.set_description(f'- Something went wrong with {row.run_id!r}: {print_exc()}\n')
237
+
238
+ progress.empty()
239
+
240
+
241
+ def get_productivity(df_runs):
242
+
243
+ total_duration = df_runs.last_event_at.max() - df_runs.created_at.min()
244
+ total_steps = df_runs.num_steps.sum()
245
+ total_completions = (df_runs.num_steps*df_runs.sample_size).sum()
246
+ total_completion_words = (df_runs.num_steps*df_runs.completion_words).sum()
247
+ total_completion_tokens = round(total_completion_words/0.75)
248
+ total_validator_words = (df_runs.num_steps*df_runs.apply(lambda x: len(str(x.query).split()) + len(str(x.challenge).split()) + len(str(x.reference).split()), axis=1 )).sum()
249
+ total_validator_tokens = round(total_validator_words/0.75)
250
+ total_dataset_tokens = total_completion_tokens + total_validator_tokens
251
+
252
+ return {
253
+ 'duration':total_duration,
254
+ 'total_events':total_steps,
255
+ 'total_completions':total_completions,
256
+ 'total_completion_tokens':total_completion_tokens,
257
+ 'total_validator_tokens':total_validator_tokens,
258
+ 'total_tokens':total_dataset_tokens,
259
+ }
260
+
261
+ @st.cache_data(show_spinner=False)
262
+ def get_reward_stats(df, exclude_multiturn=True, freq='1D', remove_zero_rewards=True, agg='mean', date_min='2024-01-22', date_max='2024-06-25'):
263
+
264
+ df = df.loc[df._timestamp.between(pd.Timestamp(date_min), pd.Timestamp(date_max))]
265
+ if exclude_multiturn:
266
+ df = df.loc[df.turn == 0]
267
+ if remove_zero_rewards:
268
+ df = df.loc[df.rewards > 0]
269
+
270
+ groups = ['run_id',pd.Grouper(key='_timestamp',freq=freq),'task']
271
+ return df.groupby(groups).agg({'rewards':agg, 'normalized_rewards':agg})
272
+
273
+ def get_release_dates():
274
+ release_dates = pd.DataFrame([
275
+ {'version': '1.0.0', 'release_date': pd.Timestamp(month=1, day=22, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':['qa','summarization']},
276
+ {'version': '1.0.1', 'release_date': pd.Timestamp(month=1, day=22, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
277
+ {'version': '1.0.2', 'release_date': pd.Timestamp(month=1, day=24, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':['qa','summarization']},
278
+ {'version': '1.0.3', 'release_date': pd.Timestamp(month=2, day=14, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
279
+ {'version': '1.0.4', 'release_date': pd.Timestamp(month=2, day=15, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
280
+ {'version': '1.1.0', 'release_date': pd.Timestamp(month=2, day=21, year=2024), 'note': 'decay scores', 'model': 'zephyr', 'tasks_affected':['date_qa','math']},
281
+ {'version': '1.1.1', 'release_date': pd.Timestamp(month=2, day=28, year=2024), 'note': 'reduce penalty weight', 'model': 'zephyr', 'tasks_affected':['date_qa','qa','summarization']},
282
+ {'version': '1.1.2', 'release_date': pd.Timestamp(month=2, day=29, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
283
+ {'version': '1.1.3', 'release_date': pd.Timestamp(month=3, day=11, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]},
284
+ {'version': '1.2.0', 'release_date': pd.Timestamp(month=3, day=19, year=2024), 'note': 'vllm', 'model': 'zephyr', 'tasks_affected':[]},
285
+ {'version': '1.3.0', 'release_date': pd.Timestamp(month=3, day=27, year=2024), 'note': '', 'model': 'solar', 'tasks_affected':['all','math']},
286
+ {'version': '2.0.0', 'release_date': pd.Timestamp(month=4, day=4, year=2024), 'note': 'streaming', 'model': 'solar', 'tasks_affected':['math','qa','summarization']},
287
+ {'version': '2.1.0', 'release_date': pd.Timestamp(month=4, day=18, year=2024), 'note': 'chattensor prompt', 'model': 'solar', 'tasks_affected':['generic']},
288
+ {'version': '2.2.0', 'release_date': pd.Timestamp(month=5, day=1, year=2024), 'note': 'multiturn + paraphrase', 'model': 'solar', 'tasks_affected':['sentiment','translation','math']},
289
+ {'version': '2.3.0', 'release_date': pd.Timestamp(month=5, day=20, year=2024), 'note': 'llama + freeform date', 'model': 'llama', 'tasks_affected':['all','date_qa']},
290
+ {'version': '2.3.1', 'release_date': pd.Timestamp(month=5, day=21, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':['date_qa']},
291
+ {'version': '2.4.0', 'release_date': pd.Timestamp(month=6, day=5, year=2024), 'note': 'streaming penalty', 'model': 'llama', 'tasks_affected':[]},
292
+ {'version': '2.4.1', 'release_date': pd.Timestamp(month=6, day=6, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':[]},
293
+ {'version': '2.4.2', 'release_date': pd.Timestamp(month=6, day=7, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':[]},
294
+ {'version': '2.4.2', 'release_date': pd.Timestamp(month=6, day=7, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':[]},
295
+ {'version': '2.5.0', 'release_date': pd.Timestamp(month=6, day=18, year=2024), 'note': 'reduce multiturn', 'model': 'llama', 'tasks_affected':['translation','sentiment']},
296
+ {'version': '2.5.1', 'release_date': pd.Timestamp(month=6, day=25, year=2024), 'note': 'reduce timeout', 'model': 'llama', 'tasks_affected':[]},
297
+ ])
298
+ return release_dates
299
+
300
+
301
+ def plot_reward_trends(df_stats, task='qa', window=14, col='normalized_reward', annotate=False, task_label='Question answering'):
302
+
303
+ stats = df_stats.reset_index()
304
+ release_dates = get_release_dates()
305
+ stats_task = stats.loc[(stats.task == task)].sort_values(by='_timestamp')
306
+ stats_task['rewards_ma'] = stats_task[col].rolling(window, min_periods=0).mean()
307
+ fig = px.area(stats_task,
308
+ x='_timestamp', y='rewards_ma',
309
+ title=f'Reward Trend for {task_label} Task',
310
+ labels={'rewards_ma': f'Rewards [{window} day avg.]','_timestamp':''},
311
+ width=800,height=600,
312
+ )
313
+
314
+ if not annotate:
315
+ return fig
316
+
317
+ # Add annotations based on relevant releases
318
+ for idx, row in release_dates.iterrows():
319
+ if all(col not in row['tasks_affected'] for col in ['all',task]):
320
+ continue
321
+ # TODO add annotation or something
322
+ fig.add_vline(row['release_date'], line_color='red', opacity=0.6, line_dash='dot', line_width=1)#, annotation_text=str(v))
323
+
324
+ return fig
325
+
326
+ @st.cache_data()
327
+ def get_task_counts(df_runs, df_events):
328
+ # Get mapping from run id to prompting repo version
329
+ run_to_version = df_runs.set_index('run_id').version.to_dict()
330
+
331
+ df_events['version'] = df_events.run_id.map(run_to_version)
332
+
333
+ def version_to_spec(version):
334
+ major, minor, patch = version.split('.')
335
+ return 10_000 * major + 100 * minor + patch
336
+
337
+ def get_closest_prev_version(version, my_versions):
338
+
339
+ ref_spec = version_to_spec(version)
340
+ my_specs = list(map(version_to_spec, my_versions))
341
+
342
+ match = my_specs[0]
343
+ for spec in my_specs[1:]:
344
+ if spec>ref_spec:
345
+ break
346
+
347
+ match = spec
348
+
349
+ return my_versions[my_specs.index(match)]
350
+
351
+ # Now estimate the distribution of tasks for each version using the event data
352
+ task_rate = df_events.groupby('version').task.value_counts(normalize=True).unstack().fillna(0)
353
+ # Impute missing versions
354
+ for v in sorted(df_runs.version.unique()):
355
+ if v not in task_rate.index:
356
+ prev_version = get_closest_prev_version(v, list(task_rate.index))
357
+ print(f'Imputing version {v} with task rate from closes previous version {prev_version!r}')
358
+ task_rate.loc[v] = task_rate.loc[prev_version]
359
+
360
+ # get esimated number of each task generated in every run using summary dataframe
361
+ task_counts = df_runs.set_index('created_at').sort_index().apply(lambda x: round(task_rate.loc[x.version]*x.num_steps), axis=1).cumsum()
362
+ return task_counts
363
+
364
+
365
+ def load_state_vars(username=USERNAME, percentile=0.95):
366
 
 
367
  UPDATE_INTERVAL = 600
368
 
369
+ df_runs = build_data(time.time()//UPDATE_INTERVAL, use_cache=True)
370
+
371
+ df_runs = df_runs.loc[df_runs.netuid.isin([1,61,102])]
372
+ st.toast(f'Loaded {len(df_runs)} runs')
373
+
374
+ df_vali = df_runs.loc[df_runs.username == username]
375
+
376
+ download_runs(time.time()//UPDATE_INTERVAL, df_vali)
377
+
378
+ df_events = load_downloaded_runs(time.time()//UPDATE_INTERVAL)
379
+ df_events = normalize_rewards(df_events, percentile=percentile)
380
+
381
+ yesterday = pd.Timestamp.now() - pd.Timedelta('1d')
382
+ runs_alive_24h_ago = (df_runs.last_event_at > yesterday)
383
+
384
+ df_runs_24h = df_runs.loc[runs_alive_24h_ago]
385
+
386
+ # weight factor indicates the fraction of events that happened within the last 24 hour.
387
+ fraction = 1 - (yesterday - df_runs_24h.created_at) / (pd.Timestamp.now()- df_runs_24h.created_at)
388
+ df_runs_24h['fraction'] = fraction.clip(0,1)
389
+ df_runs_24h['num_steps'] *= fraction.clip(0,1)
390
+
391
+ df_task_counts = get_task_counts(df_runs, df_events)
392
 
393
  df_m = get_metagraph(time.time()//UPDATE_INTERVAL)
394
 
395
  return {
396
+ 'df_runs': df_runs,
397
+ 'df_runs_24h': df_runs_24h,
398
+ 'df_vali': df_vali,
399
+ 'df_events': df_events,
400
  'metagraph': df_m,
401
+ 'df_task_counts': df_task_counts
402
  }
403
 
404