File size: 7,579 Bytes
e60235b
 
 
 
 
 
 
97fcb64
 
 
 
 
 
 
e60235b
 
 
 
969e123
 
 
e60235b
969e123
 
 
 
 
 
e60235b
 
 
969e123
 
 
 
 
 
e60235b
 
 
 
 
 
 
 
 
969e123
e60235b
 
 
 
 
 
 
 
969e123
e60235b
 
969e123
 
 
 
e60235b
 
 
 
 
 
 
 
 
fc62c89
e60235b
 
fc62c89
6d05e40
e60235b
 
fc62c89
e60235b
fc62c89
e60235b
 
fc62c89
e60235b
 
 
 
 
 
 
 
 
 
 
fc62c89
e60235b
 
 
 
 
 
 
 
 
 
 
 
fc62c89
e60235b
 
 
 
 
 
 
 
 
97fcb64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import re
import pandas as pd
import streamlit as st

import  opendashboards.utils.utils as utils

from pandas.api.types import (
    is_categorical_dtype,
    is_datetime64_any_dtype,
    is_numeric_dtype,
    is_object_dtype,
)


@st.cache_data
def load_runs(project, filters, min_steps=10):
    runs = []
    n_events = 0
    successful = 0
    progress = st.progress(0, 'Fetching runs from wandb')
    msg = st.empty()

    all_runs = utils.get_runs(project, filters, api_key=st.secrets['WANDB_API_KEY'])
    for i, run in enumerate(all_runs):
        
        summary = run.summary
        step = summary.get('_step',0)
        if step < min_steps:
            msg.warning(f'Skipped run `{run.name}` because it contains {step} events (<{min_steps})')
            continue
        
        prog_msg = f'Loading data {i/len(all_runs)*100:.0f}% ({successful}/{len(all_runs)} runs, {n_events} events)'
        progress.progress(i/len(all_runs),f'{prog_msg}... **fetching** `{run.name}`')
        
        duration = summary.get('_runtime')
        end_time = summary.get('_timestamp')
        # extract values for selected tags
        rules = {'hotkey': re.compile('^[0-9a-z]{48}$',re.IGNORECASE), 'version': re.compile('^\\d\.\\d+\.\\d+$'), 'spec_version': re.compile('\\d{4}$')}
        tags = {k: tag for k, rule in rules.items() for tag in run.tags if rule.match(tag)}
        # include bool flag for remaining tags
        tags.update({k: k in run.tags for k in ('mock','custom_gating_model','nsfw_filter','outsource_scoring','disable_set_weights')})

        runs.append({
            'state': run.state,
            'num_steps': step,
            'num_completions': step*sum(len(v) for k, v in run.summary.items() if k.endswith('completions') and isinstance(v, list)),
            'entity': run.entity,
            'id': run.id,
            'name': run.name,
            'project': run.project,
            'url': run.url,
            'path': os.path.join(run.entity, run.project, run.id),
            'start_time': pd.to_datetime(end_time-duration, unit="s"),
            'end_time': pd.to_datetime(end_time, unit="s"),
            'duration': pd.to_timedelta(duration, unit="s").round('s'),
            **tags
        })
        n_events += step
        successful += 1

    progress.empty()
    msg.empty()
    return pd.DataFrame(runs).astype({'state': 'category', 'hotkey': 'category', 'version': 'category', 'spec_version': 'category'})


@st.cache_data
def load_data(selected_runs, load=True, save=False):

    frames = []
    n_events = 0
    successful = 0
    progress = st.progress(0, 'Loading data')
    info = st.empty()
    if not os.path.exists('data/'):
        os.makedirs('data/')
    for i, idx in enumerate(selected_runs.index):
        run = selected_runs.loc[idx]
        prog_msg = f'Loading data {i/len(selected_runs)*100:.0f}% ({successful}/{len(selected_runs)} runs, {n_events} events)'

        file_path = os.path.join('data',f'history-{run.id}.csv')

        if load and os.path.exists(file_path):
            progress.progress(i/len(selected_runs),f'{prog_msg}... **reading** `{file_path}`')
            try:
                df = utils.load_data(file_path)
            except Exception as e:
                info.warning(f'Failed to load history from `{file_path}`')
                st.exception(e)
                continue
        else:
            progress.progress(i/len(selected_runs),f'{prog_msg}... **downloading** `{run.path}`')
            try:
                # Download the history from wandb
                df = utils.download_data(run.path)
                # Add metadata to the dataframe
                df.assign(**run.to_dict())

                if save and run.state != 'running':
                    df.to_csv(file_path, index=False)
                    # st.info(f'Saved history to {file_path}')
            except Exception as e:
                info.warning(f'Failed to download history for `{run.path}`')
                st.exception(e)
                continue

        frames.append(df)
        n_events += df.shape[0]
        successful += 1

    progress.empty()
    if not frames:
        info.error('No data loaded')
        st.stop()
    # Remove rows which contain chain weights as it messes up schema
    return pd.concat(frames)


def filter_dataframe(df: pd.DataFrame, demo_selection=None) -> pd.DataFrame:
    """
    Adds a UI on top of a dataframe to let viewers filter columns

    Args:
        df (pd.DataFrame): Original dataframe
        demo_selection (pd.Index): Index of runs to select (if demo)

    Returns:
        pd.DataFrame: Filtered dataframe
    """
    filter_mode = st.sidebar.radio("Filter mode", ("Use demo", "Add filters"), index=0)

    run_msg = st.info("Select a single wandb run or compare multiple runs")

    if filter_mode == "Use demo":
        df = df.loc[demo_selection]
        run_msg.info(f"Selected {len(df)} runs")
        return df
    
    df = df.copy()

    # Try to convert datetimes into a standarrd format (datetime, no timezone)
    for col in df.columns:
        if is_object_dtype(df[col]):
            try:
                df[col] = pd.to_datetime(df[col])
            except Exception:
                pass

        if is_datetime64_any_dtype(df[col]):
            df[col] = df[col].dt.tz_localize(None)

    modification_container = st.container()

    with modification_container:
        to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
        for column in to_filter_columns:
            left, right = st.columns((1, 20))
            # Treat columns with < 10 unique values as categorical
            if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
                user_cat_input = right.multiselect(
                    f"Values for {column}",
                    df[column].unique(),
                    default=list(df[column].unique()),
                )
                df = df[df[column].isin(user_cat_input)]
            elif is_numeric_dtype(df[column]):
                _min = float(df[column].min())
                _max = float(df[column].max())
                step = (_max - _min) / 100
                user_num_input = right.slider(
                    f"Values for {column}",
                    min_value=_min,
                    max_value=_max,
                    value=(_min, _max),
                    step=step,
                )
                df = df[df[column].between(*user_num_input)]
            elif is_datetime64_any_dtype(df[column]):
                user_date_input = right.date_input(
                    f"Values for {column}",
                    value=(
                        df[column].min(),
                        df[column].max(),
                    ),
                )
                if len(user_date_input) == 2:
                    user_date_input = tuple(map(pd.to_datetime, user_date_input))
                    start_date, end_date = user_date_input
                    df = df.loc[df[column].between(start_date, end_date)]
            else:
                user_text_input = right.text_input(
                    f"Substring or regex in {column}",
                )
                if user_text_input:
                    df = df[df[column].astype(str).str.contains(user_text_input)]


    # Load data if new runs selected
    if len(df):
        run_msg.info(f"Selected {len(df)} runs")
    else:
        # open a dialog to select runs
        run_msg.error("Please select at least one run")
        # st.snow()
        # st.stop()

    return df