Spaces:
Paused
Paused
File size: 8,128 Bytes
97fcb64 f98fb68 e60235b f98fb68 e60235b 97fcb64 0007a6b f98fb68 55af4cc 97fcb64 e60235b f98fb68 e60235b f98fb68 e60235b f98fb68 97fcb64 f98fb68 e60235b f98fb68 97fcb64 969e123 97fcb64 969e123 f98fb68 97fcb64 969e123 55af4cc 97fcb64 e60235b f98fb68 55af4cc f98fb68 97fcb64 969e123 55af4cc f98fb68 e60235b 969e123 f98fb68 97fcb64 f98fb68 55af4cc 969e123 55af4cc 969e123 55af4cc 969e123 55af4cc f98fb68 97fcb64 e60235b 55af4cc e60235b 55af4cc e60235b 97fcb64 e60235b f98fb68 e60235b f98fb68 e60235b f98fb68 55af4cc 44a0b65 55af4cc 97fcb64 e60235b f98fb68 55af4cc f98fb68 e60235b 44a0b65 e60235b 55af4cc e60235b f98fb68 97fcb64 e60235b f98fb68 e60235b 44a0b65 55af4cc f98fb68 969e123 f98fb68 97fcb64 55af4cc 97fcb64 44a0b65 97fcb64 44a0b65 55af4cc 97fcb64 e60235b 97fcb64 f98fb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import time
import pandas as pd
import streamlit as st
from opendashboards.assets import io, inspect, metric, plot
# prompt-based completion score stats
# instrospect specific RUN-UID-COMPLETION
# cache individual file loads
# Hotkey churn
DEFAULT_PROJECT = "openvalidators"
DEFAULT_FILTERS = {"tags": {"$in": [f'1.1.{i}' for i in range(10)]}}
DEFAULT_SELECTED_HOTKEYS = None
DEFAULT_SRC = 'followup'
DEFAULT_COMPLETION_NTOP = 10
DEFAULT_UID_NTOP = 10
# Set app config
st.set_page_config(
page_title='Validator Dashboard',
menu_items={
'Report a bug': "https://github.com/opentensor/dashboards/issues",
'About': """
This dashboard is part of the OpenTensor project. \n
To see runs in wandb, go to: \n
https://wandb.ai/opentensor-dev/openvalidators/table?workspace=default
"""
},
layout = "centered"
)
st.title('Validator :red[Analysis] Dashboard :eyes:')
# add vertical space
st.markdown('#')
st.markdown('#')
with st.spinner(text=f'Checking wandb...'):
df_runs = io.load_runs(project=DEFAULT_PROJECT, filters=DEFAULT_FILTERS, min_steps=10)
metric.wandb(df_runs)
# add vertical space
st.markdown('#')
st.markdown('#')
tab1, tab2, tab3, tab4 = st.tabs(["Raw Data", "UID Health", "Completions", "Prompt-based scoring"])
### Wandb Runs ###
with tab1:
st.markdown('#')
st.subheader(":violet[Run] Data")
with st.expander(f'Show :violet[raw] wandb data'):
edited_df = st.data_editor(
df_runs.assign(Select=False).set_index('Select'),
column_config={"Select": st.column_config.CheckboxColumn(required=True)},
disabled=df_runs.columns,
use_container_width=True,
)
df_runs_subset = df_runs[edited_df.index==True]
n_runs = len(df_runs_subset)
if n_runs:
df = io.load_data(df_runs_subset, load=True, save=True)
df = inspect.clean_data(df)
print(f'\nNans in columns: {df.isna().sum()}')
df_long = inspect.explode_data(df)
else:
st.info(f'You must select at least one run to load data')
st.stop()
metric.runs(df_long)
st.markdown('#')
st.subheader(":violet[Event] Data")
with st.expander(f'Show :violet[raw] event data for **{n_runs} selected runs**'):
raw_data_col1, raw_data_col2 = st.columns(2)
use_long_checkbox = raw_data_col1.checkbox('Use long format', value=True)
num_rows = raw_data_col2.slider('Number of rows:', min_value=1, max_value=100, value=10, key='num_rows')
st.dataframe(df_long.head(num_rows) if use_long_checkbox else df.head(num_rows),
use_container_width=True)
step_types = ['all']+['augment','followup','answer']#list(df.name.unique())
### UID Health ###
# TODO: Live time - time elapsed since moving_averaged_score for selected UID was 0 (lower bound so use >Time)
# TODO: Weight - Most recent weight for selected UID (Add warning if weight is 0 or most recent timestamp is not current)
with tab2:
st.markdown('#')
st.subheader("UID :violet[Health]")
st.info(f"Showing UID health metrics for **{n_runs} selected runs**")
uid_src = st.radio('Select event type:', step_types, horizontal=True, key='uid_src')
df_uid = df_long[df_long.name.str.contains(uid_src)] if uid_src != 'all' else df_long
metric.uids(df_uid, uid_src)
uids = st.multiselect('UID:', sorted(df_uid['uids'].unique()), key='uid')
with st.expander(f'Show UID health data for **{n_runs} selected runs** and **{len(uids)} selected UIDs**'):
st.markdown('#')
st.subheader(f"UID {uid_src.title()} :violet[Health]")
agg_uid_checkbox = st.checkbox('Aggregate UIDs', value=True)
if agg_uid_checkbox:
metric.uids(df_uid, uid_src, uids)
else:
for uid in uids:
st.caption(f'UID: {uid}')
metric.uids(df_uid, uid_src, [uid])
st.subheader(f'Cumulative completion frequency')
freq_col1, freq_col2 = st.columns(2)
freq_ntop = freq_col1.slider('Number of Completions:', min_value=10, max_value=1000, value=100, key='freq_ntop')
freq_rm_empty = freq_col2.checkbox('Remove empty (failed)', value=True, key='freq_rm_empty')
freq_cumulative = freq_col2.checkbox('Cumulative', value=False, key='freq_cumulative')
freq_normalize = freq_col2.checkbox('Normalize', value=True, key='freq_normalize')
plot.uid_completion_counts(df_uid, uids=uids, src=uid_src, ntop=freq_ntop, rm_empty=freq_rm_empty, cumulative=freq_cumulative, normalize=freq_normalize)
with st.expander(f'Show UID **{uid_src}** leaderboard data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader(f"UID {uid_src.title()} :violet[Leaderboard]")
uid_col1, uid_col2 = st.columns(2)
uid_ntop = uid_col1.slider('Number of UIDs:', min_value=1, max_value=50, value=DEFAULT_UID_NTOP, key='uid_ntop')
uid_agg = uid_col2.selectbox('Aggregation:', ('mean','min','max','size','nunique'), key='uid_agg')
plot.leaderboard(
df_uid,
ntop=uid_ntop,
group_on='uids',
agg_col='rewards',
agg=uid_agg
)
with st.expander(f'Show UID **{uid_src}** diversity data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader(f"UID {uid_src.title()} :violet[Diversity]")
rm_failed = st.checkbox(f'Remove failed **{uid_src}** completions', value=True)
plot.uid_diversty(df, rm_failed)
### Completions ###
with tab3:
st.markdown('#')
st.subheader('Completion :violet[Leaderboard]')
completion_info = st.empty()
msg_col1, msg_col2 = st.columns(2)
# completion_src = msg_col1.radio('Select one:', ['followup', 'answer'], horizontal=True, key='completion_src')
completion_src = st.radio('Select event type:', step_types, horizontal=True, key='completion_src')
df_comp = df_long[df_long.name.str.contains(completion_src)] if completion_src != 'all' else df_long
completion_info.info(f"Showing **{completion_src}** completions for **{n_runs} selected runs**")
completion_ntop = msg_col2.slider('Top k:', min_value=1, max_value=50, value=DEFAULT_COMPLETION_NTOP, key='completion_ntop')
completions = inspect.completions(df_long, 'completions')
# Get completions with highest average rewards
plot.leaderboard(
df_comp,
ntop=completion_ntop,
group_on='completions',
agg_col='rewards',
agg='mean',
alias=True
)
with st.expander(f'Show **{completion_src}** completion rewards data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader('Completion :violet[Rewards]')
completion_select = st.multiselect('Completions:', completions.index, default=completions.index[:3].tolist())
# completion_regex = st.text_input('Completion regex:', value='', key='completion_regex')
plot.completion_rewards(
df_comp,
completion_col='completions',
reward_col='rewards',
uid_col='uids',
ntop=completion_ntop,
completions=completion_select,
)
# TODO: show the UIDs which have used the selected completions
with st.expander(f'Show **{completion_src}** completion length data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader('Completion :violet[Length]')
completion_length_radio = st.radio('Use: ', ['characters','words','sentences'], key='completion_length_radio')
# Todo: use color to identify selected completions/ step names/ uids
plot.completion_length_time(
df_comp,
completion_col='completions',
uid_col='uids',
time_col='completion_times',
length_opt=completion_length_radio,
)
### Prompt-based scoring ###
with tab4:
# coming soon
st.info('Prompt-based scoring coming soon')
st.snow()
# st.dataframe(df_long_long.filter(regex=prompt_src).head())
|