sn1 / multigraph.py
steffenc's picture
Working metagraph dashboard
dea3205
raw
history blame
5.5 kB
import os
import sys
import argparse
from traceback import print_exc
import pickle
import tqdm
import pandas as pd
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
import torch
import bittensor
from meta_utils import load_metagraphs
#TODO: make line charts and other cool stuff for each metagraph snapshot
def process(block, netuid=1, lite=True, difficulty=False, prune_weights=False, return_graph=False, half=True, subtensor=None):
if subtensor is None:
subtensor = bittensor.subtensor(network='finney')
try:
metagraph = subtensor.metagraph(block=block, netuid=netuid, lite=lite)
if difficulty:
metagraph.difficulty = subtensor.difficulty(block=block, netuid=netuid)
if not lite:
if half:
metagraph.weights = torch.nn.Parameter(metagraph.weights.half(), requires_grad=False)
if prune_weights:
metagraph.weights = metagraph.weights[metagraph.weights.sum(axis=1) > 0]
with open(f'data/metagraph/{netuid}/{block}.pkl', 'wb') as f:
pickle.dump(metagraph, f)
return metagraph if return_graph else True
except Exception as e:
print(f'Error processing block {block}: {e}')
def parse_arguments():
parser = argparse.ArgumentParser(description='Process metagraphs for a given network.')
parser.add_argument('--netuid', type=int, default=1, help='Network UID to use.')
parser.add_argument('--difficulty', action='store_true', help='Include difficulty in metagraph.')
parser.add_argument('--prune_weights', action='store_true', help='Prune weights in metagraph.')
parser.add_argument('--return_graph', action='store_true', help='Return metagraph instead of True.')
parser.add_argument('--no_dataframe', action='store_true', help='Do not create dataframe.')
parser.add_argument('--max_workers', type=int, default=32, help='Max workers to use.')
parser.add_argument('--start_block', type=int, default=1_500_000, help='Start block.')
parser.add_argument('--end_block', type=int, default=600_000, help='End block.')
parser.add_argument('--step_size', type=int, default=100, help='Step size.')
return parser.parse_args()
if __name__ == '__main__':
subtensor = bittensor.subtensor(network='finney')
print(f'Current block: {subtensor.block}')
args = parse_arguments()
netuid=args.netuid
difficulty=args.difficulty
overwrite=False
return_graph=args.return_graph
step_size = args.step_size
start_block = args.start_block
start_block = (min(subtensor.block, start_block)//step_size)*step_size # round to nearest step_size
end_block = args.end_block
blocks = range(start_block, end_block, -step_size)
# only get weights for multiple of 500 blocks
lite=lambda x: x%500!=0
max_workers = min(args.max_workers, len(blocks))
datadir = f'data/metagraph/{netuid}'
os.makedirs(datadir, exist_ok=True)
if not overwrite:
blocks = [block for block in blocks if not os.path.exists(f'data/metagraph/{netuid}/{block}.pkl')]
metagraphs = []
if len(blocks)>0:
print(f'Processing {len(blocks)} blocks from {blocks[0]}-{blocks[-1]} using {max_workers} workers.')
with ProcessPoolExecutor(max_workers=max_workers) as executor:
futures = [
executor.submit(process, block, lite=lite(block), netuid=netuid, difficulty=difficulty)
for block in blocks
]
success = 0
with tqdm.tqdm(total=len(futures)) as pbar:
for block, future in zip(blocks,futures):
try:
metagraphs.append(future.result())
success += 1
except Exception as e:
print(f'generated an exception: {print_exc(e)}')
pbar.update(1)
pbar.set_description(f'Processed {success} blocks. Current block: {block}')
if not success:
raise ValueError('No blocks were successfully processed.')
print(f'Processed {success} blocks.')
if return_graph:
for metagraph in metagraphs:
print(f'{metagraph.block}: {metagraph.n.item()} nodes, difficulty={getattr(metagraph, "difficulty", None)}, weights={metagraph.weights.shape if hasattr(metagraph, "weights") else None}')
print(metagraphs[-1])
else:
print(f'No blocks to process. Current block: {subtensor.block}')
if not args.no_dataframe:
save_path = f'data/metagraph/{netuid}/df.parquet'
blocks = range(start_block, end_block, step_size)
df_loaded = None
if os.path.exists(save_path):
df_loaded = pd.read_parquet(save_path)
blocks = [block for block in blocks if block not in df_loaded.block.unique()]
print(f'Loaded dataframe from {save_path!r}. {len(df_loaded)} rows. {len(blocks)} blocks to process.')
if len(blocks)==0:
print('No blocks to process.')
sys.exit(0)
df = load_metagraphs(blocks[0], blocks[-1], block_step=step_size, datadir=datadir)
if df_loaded is not None:
df = pd.concat([df, df_loaded], ignore_index=True)
df.to_parquet(save_path)
print(f'Saved dataframe to {save_path!r}')