sn1 / plotting.py
steffenc's picture
HELLO
f98fb68
raw
history blame
14.7 kB
# The MIT License (MIT)
# Copyright © 2021 Yuma Rao
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the “Software”), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software.
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
# THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import tqdm
import pandas as pd
import numpy as np
import networkx as nx
import plotly.express as px
import plotly.graph_objects as go
from typing import List, Union
plotly_config = {"width": 800, "height": 600, "template": "plotly_white"}
def plot_throughput(df: pd.DataFrame, n_minutes: int = 10) -> go.Figure:
"""Plot throughput of event log.
Args:
df (pd.DataFrame): Dataframe of event log.
n_minutes (int, optional): Number of minutes to aggregate. Defaults to 10.
"""
rate = df.resample(rule=f"{n_minutes}T", on="_timestamp").size()
return px.line(
x=rate.index, y=rate, title="Event Log Throughput", labels={"x": "", "y": f"Logs / {n_minutes} min"}, **plotly_config
)
def plot_weights(scores: pd.DataFrame, ntop: int = 20, uids: List[Union[str, int]] = None) -> go.Figure:
"""_summary_
Args:
scores (pd.DataFrame): Dataframe of scores. Should be indexed by timestamp and have one column per uid.
ntop (int, optional): Number of uids to plot. Defaults to 20.
uids (List[Union[str, int]], optional): List of uids to plot, should match column names. Defaults to None.
"""
# Select subset of columns for plotting
if uids is None:
uids = scores.columns[:ntop]
print(f"Using first {ntop} uids for plotting: {uids}")
return px.line(
scores, y=uids, title="Moving Averaged Scores", labels={"_timestamp": "", "value": "Score"}, **plotly_config
).update_traces(opacity=0.7)
def plot_uid_diversty(df: pd.DataFrame, remove_unsuccessful: bool = False) -> go.Figure:
"""Plot uid diversity as measured by ratio of unique to total completions.
Args:
df (pd.DataFrame): Dataframe of event log.
"""
uid_cols = ["followup_uids", "answer_uids"]
completion_cols = ["followup_completions", "answer_completions"]
reward_cols = ["followup_rewards", "answer_rewards"]
list_cols = uid_cols + completion_cols + reward_cols
df = df[list_cols].explode(column=list_cols)
if remove_unsuccessful:
# remove unsuccessful completions, as indicated by empty completions
for col in completion_cols:
df = df[df[col].str.len() > 0]
frames = []
for uid_col, completion_col, reward_col in zip(uid_cols, completion_cols, reward_cols):
frame = df.groupby(uid_col).agg({completion_col: ["nunique", "size"], reward_col: "mean"})
# flatten multiindex columns
frame.columns = ["_".join(col) for col in frame.columns]
frame["diversity"] = frame[f"{completion_col}_nunique"] / frame[f"{completion_col}_size"]
frames.append(frame)
merged = pd.merge(*frames, left_index=True, right_index=True, suffixes=("_followup", "_answer"))
merged["reward_mean"] = merged.filter(regex="rewards_mean").mean(axis=1)
merged.index.name = "UID"
merged.reset_index(inplace=True)
return px.scatter(
merged,
x="diversity_followup",
y="diversity_answer",
opacity=0.3,
size="followup_completions_size",
color="reward_mean",
hover_data=["UID"] + merged.columns.tolist(),
marginal_x="histogram",
marginal_y="histogram",
color_continuous_scale=px.colors.sequential.Bluered,
labels={"x": "Followup diversity", "y": "Answer diversity"},
title="Diversity of completions by UID",
**plotly_config,
)
def plot_completion_rates(
df: pd.DataFrame,
msg_col: str = "all_completions",
time_interval: str = "H",
time_col: str = "_timestamp",
ntop: int = 20,
completions: List[str] = None,
completion_regex: str = None,
) -> go.Figure:
"""Plot completion rates. Useful for identifying common completions and attacks.
Args:
df (pd.DataFrame): Dataframe of event log.
msg_col (str, optional): List-like column containing completions. Defaults to 'all_completions'.
time_interval (str, optional): Pandas time interval. Defaults to 'H'. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
time_col (str, optional): Column containing timestamps as pd.Datetime. Defaults to '_timestamp'.
ntop (int, optional): Number of completions to plot. Defaults to 20.
completions (List[str], optional): List of completions to plot. Defaults to None.
completion_regex (str, optional): Regex to match completions. Defaults to None.
"""
df = df[[time_col, msg_col]].explode(column=msg_col)
if completions is None:
completion_counts = df[msg_col].value_counts()
if completion_regex is not None:
completions = completion_counts[completion_counts.index.str.contains(completion_regex)].index[:ntop]
print(f"Using {len(completions)} completions which match {completion_regex!r}: \n{completions}")
else:
completions = completion_counts.index[:ntop]
print(f"Using top {len(completions)} completions: \n{completions}")
period = df[time_col].dt.to_period(time_interval)
counts = df.groupby([msg_col, period]).size()
top_counts = counts.loc[completions].reset_index().rename(columns={0: "Size"})
top_counts["Completion ID"] = top_counts[msg_col].map({k: f"{i}" for i, k in enumerate(completions, start=1)})
return px.line(
top_counts.astype({time_col: str}),
x=time_col,
y="Size",
color="Completion ID",
hover_data=[top_counts[msg_col].str.replace("\n", "<br>")],
labels={time_col: f"Time, {time_interval}", "Size": f"Occurrences / {time_interval}"},
title=f"Completion Rates for {len(completions)} Messages",
**plotly_config,
).update_traces(opacity=0.7)
def plot_completion_rewards(
df: pd.DataFrame,
msg_col: str = "followup_completions",
reward_col: str = "followup_rewards",
time_col: str = "_timestamp",
uid_col: str = "followup_uids",
ntop: int = 3,
completions: List[str] = None,
completion_regex: str = None,
) -> go.Figure:
"""Plot completion rewards. Useful for tracking common completions and their rewards.
Args:
df (pd.DataFrame): Dataframe of event log.
msg_col (str, optional): List-like column containing completions. Defaults to 'followup_completions'.
reward_col (str, optional): List-like column containing rewards. Defaults to 'followup_rewards'.
time_col (str, optional): Column containing timestamps as pd.Datetime. Defaults to '_timestamp'.
ntop (int, optional): Number of completions to plot. Defaults to 20.
completions (List[str], optional): List of completions to plot. Defaults to None.
completion_regex (str, optional): Regex to match completions. Defaults to None.
"""
df = (
df[[time_col, uid_col, msg_col, reward_col]]
.explode(column=[msg_col, uid_col, reward_col])
.rename(columns={uid_col: "UID"})
)
completion_counts = df[msg_col].value_counts()
if completions is None:
if completion_regex is not None:
completions = completion_counts[completion_counts.index.str.contains(completion_regex)].index[:ntop]
print(f"Using {len(completions)} completions which match {completion_regex!r}: \n{completions}")
else:
completions = completion_counts.index[:ntop]
print(f"Using top {len(completions)} completions: \n{completions}")
# Get ranks of completions in terms of number of occurrences
ranks = completion_counts.rank(method="dense", ascending=False).loc[completions].astype(int)
# Filter to only the selected completions
df = df.loc[df[msg_col].isin(completions)]
df["rank"] = df[msg_col].map(ranks).astype(str)
df["Total"] = df[msg_col].map(completion_counts)
return px.scatter(
df,
x=time_col,
y=reward_col,
color="rank",
hover_data=[msg_col, "UID", "Total"],
category_orders={"rank": sorted(df["rank"].unique())},
marginal_x="histogram",
marginal_y="violin",
labels={"rank": "Rank", reward_col: "Reward", time_col: ""},
title=f"Rewards for {len(completions)} Messages",
**plotly_config,
opacity=0.3,
)
def plot_leaderboard(
df: pd.DataFrame,
group_on: str = "answer_uids",
agg_col: str = "answer_rewards",
agg: str = "mean",
ntop: int = 10,
alias: bool = False,
) -> go.Figure:
"""Plot leaderboard for a given column. By default plots the top 10 UIDs by mean reward.
Args:
df (pd.DataFrame): Dataframe of event log.
group_on (str, optional): Entities to use for grouping. Defaults to 'answer_uids'.
agg_col (str, optional): Column to aggregate. Defaults to 'answer_rewards'.
agg (str, optional): Aggregation function. Defaults to 'mean'.
ntop (int, optional): Number of entities to plot. Defaults to 10.
alias (bool, optional): Whether to use aliases for indices. Defaults to False.
"""
df = df[[group_on, agg_col]].explode(column=[group_on, agg_col])
rankings = df.groupby(group_on)[agg_col].agg(agg).sort_values(ascending=False).head(ntop)
if alias:
index = rankings.index.map({name: str(i) for i, name in enumerate(rankings.index)})
else:
index = rankings.index.astype(str)
return px.bar(
x=rankings,
y=index,
color=rankings,
orientation="h",
labels={"x": f"{agg_col.title()}", "y": group_on, "color": ""},
title=f"Leaderboard for {agg_col}, top {ntop} {group_on}",
color_continuous_scale="BlueRed",
opacity=0.5,
hover_data=[rankings.index.astype(str)],
**plotly_config,
)
def plot_dendrite_rates(
df: pd.DataFrame, uid_col: str = "answer_uids", reward_col: str = "answer_rewards", ntop: int = 20, uids: List[int] = None
) -> go.Figure:
"""Makes a bar chart of the success rate of dendrite calls for a given set of uids.
Args:
df (pd.DataFrame): Dataframe of event log.
uid_col (str, optional): Column containing uids. Defaults to 'answer_uids'.
reward_col (str, optional): Column containing rewards. Defaults to 'answer_rewards'.
ntop (int, optional): Number of uids to plot. Defaults to 20.
uids (List[int], optional): List of uids to plot. Defaults to None.
"""
df = df[[uid_col, reward_col]].explode(column=[uid_col, reward_col]).rename(columns={uid_col: "UID"})
df["success"] = df[reward_col] != 0
if uids is None:
uids = df["UID"].value_counts().head(ntop).index
df = df.loc[df["UID"].isin(uids)]
# get total and successful dendrite calls
rates = df.groupby("UID").success.agg(["sum", "count"]).rename(columns={"sum": "Success", "count": "Total"})
rates = rates.melt(ignore_index=False).reset_index()
return px.bar(
rates.astype({"UID": str}),
x="value",
y="UID",
color="variable",
labels={"value": "Number of Calls", "variable": ""},
barmode="group",
title="Dendrite Calls by UID",
color_continuous_scale="Blues",
opacity=0.5,
**plotly_config,
)
def plot_network_embedding(
df: pd.DataFrame,
uid_col: str = "followup_uids",
completion_col: str = "followup_completions",
ntop: int = 1,
uids: List[int] = None,
) -> go.Figure:
"""Plots a network embedding of the most common completions for a given set of uids.
Args:
df (pd.DataFrame): Dataframe of event log.
uid_col (str, optional): Column containing uids. Defaults to 'answer_uids'.
completion_col (str, optional): Column containing completions. Defaults to 'followup_completions'.
ntop (int, optional): Number of uids to plot. Defaults to 20.
hover_data (List[str], optional): Columns to include in hover data. Defaults to None.
uids (List[int], optional): List of uids to plot. Defaults to None.
# TODO: use value counts to use weighted similarity instead of a simple set intersection
"""
top_completions = {}
df = df[[uid_col, completion_col]].explode(column=[uid_col, completion_col])
if uids is None:
uids = df[uid_col].unique()
# loop over UIDs and compute ntop most common completions
for uid in tqdm.tqdm(uids, unit="UID"):
c = df.loc[df[uid_col] == uid, completion_col].value_counts()
top_completions[uid] = set(c.index[:ntop])
a = np.zeros((len(uids), len(uids)))
# now compute similarity matrix as a set intersection
for i, uid in enumerate(uids):
for j, uid2 in enumerate(uids[i + 1 :], start=i + 1):
a[i, j] = a[j, i] = len(top_completions[uid].intersection(top_completions[uid2])) / ntop
# make a graph from the similarity matrix
g = nx.from_numpy_array(a)
z = pd.DataFrame(nx.spring_layout(g)).T.rename(columns={0: "x", 1: "y"})
z["UID"] = uids
z["top_completions"] = pd.Series(top_completions).apply(list)
# assign groups based on cliques (fully connected subgraphs)
cliques = {
uids[cc]: f"Group-{i}" if len(c) > 1 else "Other" for i, c in enumerate(nx.find_cliques(g), start=1) for cc in c
}
z["Group"] = z["UID"].map(cliques)
return px.scatter(
z.reset_index(),
x="x",
y="y",
color="Group",
title=f"Graph for Top {ntop} Completion Similarities",
color_continuous_scale="BlueRed",
hover_data=["UID", "top_completions"],
opacity=0.5,
**plotly_config,
)