Spaces:
Paused
Paused
# The MIT License (MIT) | |
# Copyright © 2021 Yuma Rao | |
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated | |
# documentation files (the “Software”), to deal in the Software without restriction, including without limitation | |
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, | |
# and to permit persons to whom the Software is furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of | |
# the Software. | |
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | |
# THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
# DEALINGS IN THE SOFTWARE. | |
import tqdm | |
import pandas as pd | |
import numpy as np | |
import networkx as nx | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from typing import List, Union | |
plotly_config = {"width": 800, "height": 600, "template": "plotly_white"} | |
def plot_throughput(df: pd.DataFrame, n_minutes: int = 10) -> go.Figure: | |
"""Plot throughput of event log. | |
Args: | |
df (pd.DataFrame): Dataframe of event log. | |
n_minutes (int, optional): Number of minutes to aggregate. Defaults to 10. | |
""" | |
rate = df.resample(rule=f"{n_minutes}T", on="_timestamp").size() | |
return px.line( | |
x=rate.index, y=rate, title="Event Log Throughput", labels={"x": "", "y": f"Logs / {n_minutes} min"}, **plotly_config | |
) | |
def plot_weights(scores: pd.DataFrame, ntop: int = 20, uids: List[Union[str, int]] = None) -> go.Figure: | |
"""_summary_ | |
Args: | |
scores (pd.DataFrame): Dataframe of scores. Should be indexed by timestamp and have one column per uid. | |
ntop (int, optional): Number of uids to plot. Defaults to 20. | |
uids (List[Union[str, int]], optional): List of uids to plot, should match column names. Defaults to None. | |
""" | |
# Select subset of columns for plotting | |
if uids is None: | |
uids = scores.columns[:ntop] | |
print(f"Using first {ntop} uids for plotting: {uids}") | |
return px.line( | |
scores, y=uids, title="Moving Averaged Scores", labels={"_timestamp": "", "value": "Score"}, **plotly_config | |
).update_traces(opacity=0.7) | |
def plot_uid_diversty(df: pd.DataFrame, remove_unsuccessful: bool = False) -> go.Figure: | |
"""Plot uid diversity as measured by ratio of unique to total completions. | |
Args: | |
df (pd.DataFrame): Dataframe of event log. | |
""" | |
uid_cols = ["followup_uids", "answer_uids"] | |
completion_cols = ["followup_completions", "answer_completions"] | |
reward_cols = ["followup_rewards", "answer_rewards"] | |
list_cols = uid_cols + completion_cols + reward_cols | |
df = df[list_cols].explode(column=list_cols) | |
if remove_unsuccessful: | |
# remove unsuccessful completions, as indicated by empty completions | |
for col in completion_cols: | |
df = df[df[col].str.len() > 0] | |
frames = [] | |
for uid_col, completion_col, reward_col in zip(uid_cols, completion_cols, reward_cols): | |
frame = df.groupby(uid_col).agg({completion_col: ["nunique", "size"], reward_col: "mean"}) | |
# flatten multiindex columns | |
frame.columns = ["_".join(col) for col in frame.columns] | |
frame["diversity"] = frame[f"{completion_col}_nunique"] / frame[f"{completion_col}_size"] | |
frames.append(frame) | |
merged = pd.merge(*frames, left_index=True, right_index=True, suffixes=("_followup", "_answer")) | |
merged["reward_mean"] = merged.filter(regex="rewards_mean").mean(axis=1) | |
merged.index.name = "UID" | |
merged.reset_index(inplace=True) | |
return px.scatter( | |
merged, | |
x="diversity_followup", | |
y="diversity_answer", | |
opacity=0.3, | |
size="followup_completions_size", | |
color="reward_mean", | |
hover_data=["UID"] + merged.columns.tolist(), | |
marginal_x="histogram", | |
marginal_y="histogram", | |
color_continuous_scale=px.colors.sequential.Bluered, | |
labels={"x": "Followup diversity", "y": "Answer diversity"}, | |
title="Diversity of completions by UID", | |
**plotly_config, | |
) | |
def plot_completion_rates( | |
df: pd.DataFrame, | |
msg_col: str = "all_completions", | |
time_interval: str = "H", | |
time_col: str = "_timestamp", | |
ntop: int = 20, | |
completions: List[str] = None, | |
completion_regex: str = None, | |
) -> go.Figure: | |
"""Plot completion rates. Useful for identifying common completions and attacks. | |
Args: | |
df (pd.DataFrame): Dataframe of event log. | |
msg_col (str, optional): List-like column containing completions. Defaults to 'all_completions'. | |
time_interval (str, optional): Pandas time interval. Defaults to 'H'. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases | |
time_col (str, optional): Column containing timestamps as pd.Datetime. Defaults to '_timestamp'. | |
ntop (int, optional): Number of completions to plot. Defaults to 20. | |
completions (List[str], optional): List of completions to plot. Defaults to None. | |
completion_regex (str, optional): Regex to match completions. Defaults to None. | |
""" | |
df = df[[time_col, msg_col]].explode(column=msg_col) | |
if completions is None: | |
completion_counts = df[msg_col].value_counts() | |
if completion_regex is not None: | |
completions = completion_counts[completion_counts.index.str.contains(completion_regex)].index[:ntop] | |
print(f"Using {len(completions)} completions which match {completion_regex!r}: \n{completions}") | |
else: | |
completions = completion_counts.index[:ntop] | |
print(f"Using top {len(completions)} completions: \n{completions}") | |
period = df[time_col].dt.to_period(time_interval) | |
counts = df.groupby([msg_col, period]).size() | |
top_counts = counts.loc[completions].reset_index().rename(columns={0: "Size"}) | |
top_counts["Completion ID"] = top_counts[msg_col].map({k: f"{i}" for i, k in enumerate(completions, start=1)}) | |
return px.line( | |
top_counts.astype({time_col: str}), | |
x=time_col, | |
y="Size", | |
color="Completion ID", | |
hover_data=[top_counts[msg_col].str.replace("\n", "<br>")], | |
labels={time_col: f"Time, {time_interval}", "Size": f"Occurrences / {time_interval}"}, | |
title=f"Completion Rates for {len(completions)} Messages", | |
**plotly_config, | |
).update_traces(opacity=0.7) | |
def plot_completion_rewards( | |
df: pd.DataFrame, | |
msg_col: str = "followup_completions", | |
reward_col: str = "followup_rewards", | |
time_col: str = "_timestamp", | |
uid_col: str = "followup_uids", | |
ntop: int = 3, | |
completions: List[str] = None, | |
completion_regex: str = None, | |
) -> go.Figure: | |
"""Plot completion rewards. Useful for tracking common completions and their rewards. | |
Args: | |
df (pd.DataFrame): Dataframe of event log. | |
msg_col (str, optional): List-like column containing completions. Defaults to 'followup_completions'. | |
reward_col (str, optional): List-like column containing rewards. Defaults to 'followup_rewards'. | |
time_col (str, optional): Column containing timestamps as pd.Datetime. Defaults to '_timestamp'. | |
ntop (int, optional): Number of completions to plot. Defaults to 20. | |
completions (List[str], optional): List of completions to plot. Defaults to None. | |
completion_regex (str, optional): Regex to match completions. Defaults to None. | |
""" | |
df = ( | |
df[[time_col, uid_col, msg_col, reward_col]] | |
.explode(column=[msg_col, uid_col, reward_col]) | |
.rename(columns={uid_col: "UID"}) | |
) | |
completion_counts = df[msg_col].value_counts() | |
if completions is None: | |
if completion_regex is not None: | |
completions = completion_counts[completion_counts.index.str.contains(completion_regex)].index[:ntop] | |
print(f"Using {len(completions)} completions which match {completion_regex!r}: \n{completions}") | |
else: | |
completions = completion_counts.index[:ntop] | |
print(f"Using top {len(completions)} completions: \n{completions}") | |
# Get ranks of completions in terms of number of occurrences | |
ranks = completion_counts.rank(method="dense", ascending=False).loc[completions].astype(int) | |
# Filter to only the selected completions | |
df = df.loc[df[msg_col].isin(completions)] | |
df["rank"] = df[msg_col].map(ranks).astype(str) | |
df["Total"] = df[msg_col].map(completion_counts) | |
return px.scatter( | |
df, | |
x=time_col, | |
y=reward_col, | |
color="rank", | |
hover_data=[msg_col, "UID", "Total"], | |
category_orders={"rank": sorted(df["rank"].unique())}, | |
marginal_x="histogram", | |
marginal_y="violin", | |
labels={"rank": "Rank", reward_col: "Reward", time_col: ""}, | |
title=f"Rewards for {len(completions)} Messages", | |
**plotly_config, | |
opacity=0.3, | |
) | |
def plot_leaderboard( | |
df: pd.DataFrame, | |
group_on: str = "answer_uids", | |
agg_col: str = "answer_rewards", | |
agg: str = "mean", | |
ntop: int = 10, | |
alias: bool = False, | |
) -> go.Figure: | |
"""Plot leaderboard for a given column. By default plots the top 10 UIDs by mean reward. | |
Args: | |
df (pd.DataFrame): Dataframe of event log. | |
group_on (str, optional): Entities to use for grouping. Defaults to 'answer_uids'. | |
agg_col (str, optional): Column to aggregate. Defaults to 'answer_rewards'. | |
agg (str, optional): Aggregation function. Defaults to 'mean'. | |
ntop (int, optional): Number of entities to plot. Defaults to 10. | |
alias (bool, optional): Whether to use aliases for indices. Defaults to False. | |
""" | |
df = df[[group_on, agg_col]].explode(column=[group_on, agg_col]) | |
rankings = df.groupby(group_on)[agg_col].agg(agg).sort_values(ascending=False).head(ntop) | |
if alias: | |
index = rankings.index.map({name: str(i) for i, name in enumerate(rankings.index)}) | |
else: | |
index = rankings.index.astype(str) | |
return px.bar( | |
x=rankings, | |
y=index, | |
color=rankings, | |
orientation="h", | |
labels={"x": f"{agg_col.title()}", "y": group_on, "color": ""}, | |
title=f"Leaderboard for {agg_col}, top {ntop} {group_on}", | |
color_continuous_scale="BlueRed", | |
opacity=0.5, | |
hover_data=[rankings.index.astype(str)], | |
**plotly_config, | |
) | |
def plot_dendrite_rates( | |
df: pd.DataFrame, uid_col: str = "answer_uids", reward_col: str = "answer_rewards", ntop: int = 20, uids: List[int] = None | |
) -> go.Figure: | |
"""Makes a bar chart of the success rate of dendrite calls for a given set of uids. | |
Args: | |
df (pd.DataFrame): Dataframe of event log. | |
uid_col (str, optional): Column containing uids. Defaults to 'answer_uids'. | |
reward_col (str, optional): Column containing rewards. Defaults to 'answer_rewards'. | |
ntop (int, optional): Number of uids to plot. Defaults to 20. | |
uids (List[int], optional): List of uids to plot. Defaults to None. | |
""" | |
df = df[[uid_col, reward_col]].explode(column=[uid_col, reward_col]).rename(columns={uid_col: "UID"}) | |
df["success"] = df[reward_col] != 0 | |
if uids is None: | |
uids = df["UID"].value_counts().head(ntop).index | |
df = df.loc[df["UID"].isin(uids)] | |
# get total and successful dendrite calls | |
rates = df.groupby("UID").success.agg(["sum", "count"]).rename(columns={"sum": "Success", "count": "Total"}) | |
rates = rates.melt(ignore_index=False).reset_index() | |
return px.bar( | |
rates.astype({"UID": str}), | |
x="value", | |
y="UID", | |
color="variable", | |
labels={"value": "Number of Calls", "variable": ""}, | |
barmode="group", | |
title="Dendrite Calls by UID", | |
color_continuous_scale="Blues", | |
opacity=0.5, | |
**plotly_config, | |
) | |
def plot_network_embedding( | |
df: pd.DataFrame, | |
uid_col: str = "followup_uids", | |
completion_col: str = "followup_completions", | |
ntop: int = 1, | |
uids: List[int] = None, | |
) -> go.Figure: | |
"""Plots a network embedding of the most common completions for a given set of uids. | |
Args: | |
df (pd.DataFrame): Dataframe of event log. | |
uid_col (str, optional): Column containing uids. Defaults to 'answer_uids'. | |
completion_col (str, optional): Column containing completions. Defaults to 'followup_completions'. | |
ntop (int, optional): Number of uids to plot. Defaults to 20. | |
hover_data (List[str], optional): Columns to include in hover data. Defaults to None. | |
uids (List[int], optional): List of uids to plot. Defaults to None. | |
# TODO: use value counts to use weighted similarity instead of a simple set intersection | |
""" | |
top_completions = {} | |
df = df[[uid_col, completion_col]].explode(column=[uid_col, completion_col]) | |
if uids is None: | |
uids = df[uid_col].unique() | |
# loop over UIDs and compute ntop most common completions | |
for uid in tqdm.tqdm(uids, unit="UID"): | |
c = df.loc[df[uid_col] == uid, completion_col].value_counts() | |
top_completions[uid] = set(c.index[:ntop]) | |
a = np.zeros((len(uids), len(uids))) | |
# now compute similarity matrix as a set intersection | |
for i, uid in enumerate(uids): | |
for j, uid2 in enumerate(uids[i + 1 :], start=i + 1): | |
a[i, j] = a[j, i] = len(top_completions[uid].intersection(top_completions[uid2])) / ntop | |
# make a graph from the similarity matrix | |
g = nx.from_numpy_array(a) | |
z = pd.DataFrame(nx.spring_layout(g)).T.rename(columns={0: "x", 1: "y"}) | |
z["UID"] = uids | |
z["top_completions"] = pd.Series(top_completions).apply(list) | |
# assign groups based on cliques (fully connected subgraphs) | |
cliques = { | |
uids[cc]: f"Group-{i}" if len(c) > 1 else "Other" for i, c in enumerate(nx.find_cliques(g), start=1) for cc in c | |
} | |
z["Group"] = z["UID"].map(cliques) | |
return px.scatter( | |
z.reset_index(), | |
x="x", | |
y="y", | |
color="Group", | |
title=f"Graph for Top {ntop} Completion Similarities", | |
color_continuous_scale="BlueRed", | |
hover_data=["UID", "top_completions"], | |
opacity=0.5, | |
**plotly_config, | |
) | |