File size: 2,149 Bytes
b5f889a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
"""2-Copy1.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1UkxKUpI5tPpdFrJIUFWSlk4LlD75Qgf6
"""

!pip install -q gradio
!pip install transformers

import gradio as gr
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import numpy as np

processor = Wav2Vec2Processor.from_pretrained("maher13/arabic-iti")
model = Wav2Vec2ForCTC.from_pretrained("maher13/arabic-iti").eval()

def asr_transcript(audio_file, audio_file2):
    transcript = ""

    if audio_file : 
      wav, sr = librosa.load(audio_file.name, sr=16000)
 
      input_values = processor(wav, sampling_rate=16000, return_tensors="pt", padding=True).input_values
      logits = model(input_values).logits
  
      with torch.no_grad():
        predicted_ids = torch.argmax(logits, dim=-1)
      predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id
      transcription1 = processor.tokenizer.batch_decode(predicted_ids)[0]
    else:
      transcription1 = "N/A"
    
    if audio_file2 : 
      wav, sr = librosa.load(audio_file2.name, sr=16000)

      input_values = processor(wav, sampling_rate=16000, return_tensors="pt", padding=True).input_values
      logits = model(input_values).logits
  
      with torch.no_grad():
        predicted_ids = torch.argmax(logits, dim=-1)
      predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id
      transcription2 = processor.tokenizer.batch_decode(predicted_ids)[0]
    else :
      transcription2 = "N/A"

    return transcription1, transcription2

gradio_ui = gr.Interface(
    fn=asr_transcript,
    title="Speech to Text Graduation project \n sponsored by TensorGraph",
    inputs=
    [
    gr.inputs.Audio(source = 'microphone', type="file", optional = True),
    gr.inputs.Audio(source = 'upload', type="file", optional = True) 
    ],
    outputs=[
             gr.outputs.Textbox(label="Auto-Transcript"),
             gr.outputs.Textbox(label="Auto-Transcript")
             ],
)



#gradio_ui.launch(share=True)
gradio_ui.launch(share=True)