Spaces:
No application file
No application file
File size: 675 Bytes
385e603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
import streamlit as st
import joblib
# Load the pre-trained model (Pipeline with vectorizer and classifier)
model = joblib.load('text_classification_pipeline.pkl')
# Title of the Streamlit app
st.title("Tweet Sentiment Classifier")
# Input text area for user to enter a tweet
tweet = st.text_area("Enter the tweet")
# Button for triggering the prediction
if st.button("Predict Sentiment"):
if tweet:
# Use the model to predict the sentiment of the tweet
prediction = model.predict([tweet])
# Display the prediction
st.write(f"Predicted Sentiment Label: {prediction[0]}")
else:
st.write("Please enter a tweet to classify.") |