Spaces:
Runtime error
Runtime error
File size: 13,688 Bytes
1493156 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
from PIL import Image
from tempfile import TemporaryDirectory
import streamlit as st
cudnn.benchmark = True
plt.ion() # interactive mode
class classifier():
def __init__(self):
self.data_transforms = None
self.data_dir = None
self.image_datasets = None
self.dataloaders = None
self.dataset_sizes = None
self.class_names = None
self.device = None
self.num_classes = None
def data_loader(self,path,batch_size=4):
# Data augmentation and normalization for training
# Just normalization for validation
self.data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
self.data_dir = path
self.image_datasets = {x: datasets.ImageFolder(os.path.join(self.data_dir, x),
self.data_transforms[x])
for x in ['train', 'val','test']}
self.dataloaders = {x: torch.utils.data.DataLoader(self.image_datasets[x], batch_size=batch_size,
shuffle=True, num_workers=4)
for x in ['train', 'val','test']}
self.dataset_sizes = {x: len(self.image_datasets[x]) for x in ['train', 'val','test']}
self.class_names = self.image_datasets['train'].classes
self.num_classes = len(self.class_names)
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train(self,model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
# Create a temporary directory to save training checkpoints
with TemporaryDirectory() as tempdir:
best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')
torch.save(model.state_dict(), best_model_params_path)
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch+1}/{num_epochs}')
print('-' * 10)
st.sidebar.subheader(f':blue[Epoch {epoch+1}/{num_epochs}]', divider='blue')
# st.sidebar.code('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in self.dataloaders[phase]:
inputs = inputs.to(self.device)
labels = labels.to(self.device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / self.dataset_sizes[phase]
epoch_acc = running_corrects.double() / self.dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
st.sidebar.caption(f':blue[{phase[0].upper() + phase[1:]} Loss:] {epoch_loss:.4f} :blue[ Accuracy:] {epoch_acc:.4f}')
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
torch.save(model.state_dict(), best_model_params_path)
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Accuracy: {best_acc:4f}')
st.sidebar.caption(f':green[Training complete in] {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
st.sidebar.subheader(f':blue[Best val Accuracy:] {best_acc:4f}')
# load best model weights
model.load_state_dict(torch.load(best_model_params_path))
return model
def train_model(self,model_name,epochs):
num_classes = self.num_classes
if model_name == 'EfficientNet_B0':
model = models.efficientnet_b0(pretrained=True)
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
# model.classifier[1].out_features = num_classes
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
elif model_name == 'EfficientNet_B1':
model = models.efficientnet_b1(pretrained=True)
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
# model.classifier[1].out_features = num_classes
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
elif model_name == 'MnasNet0_5':
model = models.mnasnet0_5(pretrained=True)
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
# model.classifier[1].out_features = num_classes
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
elif model_name == 'MnasNet0_75':
model = models.mnasnet0_75(pretrained=True)
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
# model.classifier[1].out_features = num_classes
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
elif model_name == 'MnasNet1_0':
model = models.mnasnet1_0(pretrained=True)
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
# model.classifier[1].out_features = num_classes
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
elif model_name == 'MobileNet_v2':
model = models.mobilenet_v2(pretrained=True)
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
# model.classifier[1].out_features = num_classes
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
elif model_name == 'MobileNet_v3_small':
model = models.mobilenet_v3_small(pretrained=True)
model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes)
# model.classifier[3].out_features = num_classes
optimizer = torch.optim.SGD(model.classifier[3].parameters(), lr=0.001, momentum=0.9)
elif model_name == 'MobileNet_v3_large':
model = models.mobilenet_v3_large(pretrained=True)
model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes)
# model.classifier[3].out_features = num_classes
optimizer = torch.optim.SGD(model.classifier[3].parameters(), lr=0.001, momentum=0.9)
elif model_name == 'RegNet_y_400mf':
model = models.regnet_y_400mf(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, num_classes)
# model.fc.out_features = num_classes
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
elif model_name == 'ShuffleNet_v2_x0_5':
model = models.shufflenet_v2_x0_5(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, num_classes)
# model.fc.out_features = num_classes
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
elif model_name == 'ShuffleNet_v2_x1_0':
model = models.shufflenet_v2_x1_0(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, num_classes)
# model.fc.out_features = num_classes
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
elif model_name == 'ShuffleNet_v2_x1_5':
model = models.shufflenet_v2_x1_5(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, num_classes)
# model.fc.out_features = num_classes
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
elif model_name == 'SqueezeNet 1_0':
model = models.squeezenet1_0(pretrained=True)
model.classifier[1] = nn.Conv2d(model.classifier[1].in_channels, num_classes,model.classifier[1].kernel_size, model.classifier[1].stride)
# model.classifier[1].out_channels = num_classes
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
elif model_name == 'SqueezeNet 1_1':
model = models.squeezenet1_1(pretrained=True)
model.classifier[1] = nn.Conv2d(model.classifier[1].in_channels, num_classes,model.classifier[1].kernel_size, model.classifier[1].stride)
# model.classifier[1].out_channels = num_classes
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
criterion = nn.CrossEntropyLoss()
model_ft = self.train(model, criterion, optimizer, exp_lr_scheduler,
num_epochs=epochs)
torch.save(model.state_dict(), 'model.pt')
return model_ft
def imshow(self,inp, title=None):
"""Display image for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
def visualize_model(self,model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(self.dataloaders['val']):
inputs = inputs.to(self.device)
labels = labels.to(self.device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title(f'predicted: {self.class_names[preds[j]]}')
self.imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
def pytorch_predict(self,model):
'''
Make prediction from a pytorch model
'''
# set model to evaluate model
model.eval()
y_true = torch.tensor([], dtype=torch.long, device=self.device)
all_outputs = torch.tensor([], device=self.device)
# deactivate autograd engine and reduce memory usage and speed up computations
with torch.no_grad():
for data in self.dataloaders['test']:
inputs = [i.to(self.device) for i in data[:-1]]
labels = data[-1].to(self.device)
outputs = model(*inputs)
y_true = torch.cat((y_true, labels), 0)
all_outputs = torch.cat((all_outputs, outputs), 0)
y_true = y_true.cpu().numpy()
_, y_pred = torch.max(all_outputs, 1)
y_pred = y_pred.cpu().numpy()
y_pred_prob = F.softmax(all_outputs, dim=1).cpu().numpy()
return y_true, y_pred, y_pred_prob
|