File size: 13,688 Bytes
1493156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
from PIL import Image
from tempfile import TemporaryDirectory
import streamlit as st

cudnn.benchmark = True
plt.ion()   # interactive mode

class classifier():
    def __init__(self):
        self.data_transforms = None
        self.data_dir = None
        self.image_datasets = None
        self.dataloaders = None
        self.dataset_sizes = None
        self.class_names = None
        self.device = None
        self.num_classes = None
    def data_loader(self,path,batch_size=4):
        # Data augmentation and normalization for training
        # Just normalization for validation
        self.data_transforms = {
            'train': transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ]),
            'val': transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ]),
            'test': transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])
        }

        self.data_dir = path
        self.image_datasets = {x: datasets.ImageFolder(os.path.join(self.data_dir, x),
                                                  self.data_transforms[x])
                          for x in ['train', 'val','test']}
        self.dataloaders = {x: torch.utils.data.DataLoader(self.image_datasets[x], batch_size=batch_size,
                                                     shuffle=True, num_workers=4)
                      for x in ['train', 'val','test']}
        self.dataset_sizes = {x: len(self.image_datasets[x]) for x in ['train', 'val','test']}
        self.class_names = self.image_datasets['train'].classes
        self.num_classes = len(self.class_names)
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        
    def train(self,model, criterion, optimizer, scheduler, num_epochs=25):
        since = time.time()

        # Create a temporary directory to save training checkpoints
        with TemporaryDirectory() as tempdir:
            best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')

            torch.save(model.state_dict(), best_model_params_path)
            best_acc = 0.0

            for epoch in range(num_epochs):
                print(f'Epoch {epoch+1}/{num_epochs}')
                print('-' * 10)
                st.sidebar.subheader(f':blue[Epoch {epoch+1}/{num_epochs}]', divider='blue')
                # st.sidebar.code('-' * 10)
                # Each epoch has a training and validation phase
                for phase in ['train', 'val']:
                    if phase == 'train':
                        model.train()  # Set model to training mode
                    else:
                        model.eval()   # Set model to evaluate mode

                    running_loss = 0.0
                    running_corrects = 0

                    # Iterate over data.
                    for inputs, labels in self.dataloaders[phase]:
                        inputs = inputs.to(self.device)
                        labels = labels.to(self.device)

                        # zero the parameter gradients
                        optimizer.zero_grad()

                        # forward
                        # track history if only in train
                        with torch.set_grad_enabled(phase == 'train'):
                            outputs = model(inputs)
                            _, preds = torch.max(outputs, 1)
                            loss = criterion(outputs, labels)

                            # backward + optimize only if in training phase
                            if phase == 'train':
                                loss.backward()
                                optimizer.step()

                        # statistics
                        running_loss += loss.item() * inputs.size(0)
                        running_corrects += torch.sum(preds == labels.data)
                    if phase == 'train':
                        scheduler.step()

                    epoch_loss = running_loss / self.dataset_sizes[phase]
                    epoch_acc = running_corrects.double() / self.dataset_sizes[phase]

                    print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
                    st.sidebar.caption(f':blue[{phase[0].upper() + phase[1:]} Loss:] {epoch_loss:.4f} :blue[   Accuracy:] {epoch_acc:.4f}')
                    # deep copy the model
                    if phase == 'val' and epoch_acc > best_acc:
                        best_acc = epoch_acc
                        torch.save(model.state_dict(), best_model_params_path)

                print()

            time_elapsed = time.time() - since
            print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
            print(f'Best val Accuracy: {best_acc:4f}')
            st.sidebar.caption(f':green[Training complete in] {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
            st.sidebar.subheader(f':blue[Best val Accuracy:] {best_acc:4f}')
            # load best model weights
            model.load_state_dict(torch.load(best_model_params_path))
        return model
    
    def train_model(self,model_name,epochs):
        num_classes = self.num_classes
        if model_name == 'EfficientNet_B0':
            model = models.efficientnet_b0(pretrained=True)
            model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
        #         model.classifier[1].out_features = num_classes
            optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)

        elif model_name == 'EfficientNet_B1':
            model = models.efficientnet_b1(pretrained=True)
            model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
        #         model.classifier[1].out_features = num_classes
            optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
        elif model_name == 'MnasNet0_5':
            model = models.mnasnet0_5(pretrained=True)
            model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
        #         model.classifier[1].out_features = num_classes
            optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)

        elif model_name == 'MnasNet0_75':
            model = models.mnasnet0_75(pretrained=True)
            model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
        #         model.classifier[1].out_features = num_classes
            optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'MnasNet1_0':
            model = models.mnasnet1_0(pretrained=True)
            model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
        #         model.classifier[1].out_features = num_classes
            optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'MobileNet_v2':
            model = models.mobilenet_v2(pretrained=True)
            model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
        #         model.classifier[1].out_features = num_classes
            optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'MobileNet_v3_small':
            model = models.mobilenet_v3_small(pretrained=True)
            model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes)
        #         model.classifier[3].out_features = num_classes
            optimizer = torch.optim.SGD(model.classifier[3].parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'MobileNet_v3_large':
            model = models.mobilenet_v3_large(pretrained=True)
            model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes)
        #         model.classifier[3].out_features = num_classes
            optimizer = torch.optim.SGD(model.classifier[3].parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'RegNet_y_400mf':
            model = models.regnet_y_400mf(pretrained=True)
            model.fc = nn.Linear(model.fc.in_features, num_classes)
        #         model.fc.out_features = num_classes
            optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'ShuffleNet_v2_x0_5':
            model = models.shufflenet_v2_x0_5(pretrained=True)
            model.fc = nn.Linear(model.fc.in_features, num_classes)
        #         model.fc.out_features = num_classes
            optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'ShuffleNet_v2_x1_0':
            model = models.shufflenet_v2_x1_0(pretrained=True)
            model.fc = nn.Linear(model.fc.in_features, num_classes)
        #         model.fc.out_features = num_classes
            optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'ShuffleNet_v2_x1_5':
            model = models.shufflenet_v2_x1_5(pretrained=True)
            model.fc = nn.Linear(model.fc.in_features, num_classes)
        #         model.fc.out_features = num_classes
            optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'SqueezeNet 1_0':
            model = models.squeezenet1_0(pretrained=True)
            model.classifier[1] = nn.Conv2d(model.classifier[1].in_channels, num_classes,model.classifier[1].kernel_size, model.classifier[1].stride)
        #         model.classifier[1].out_channels = num_classes
            optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)


        elif model_name == 'SqueezeNet 1_1':
            model = models.squeezenet1_1(pretrained=True)
            model.classifier[1] = nn.Conv2d(model.classifier[1].in_channels, num_classes,model.classifier[1].kernel_size, model.classifier[1].stride)
        #         model.classifier[1].out_channels = num_classes
            optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)

        exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
        criterion = nn.CrossEntropyLoss()
        model_ft = self.train(model, criterion, optimizer, exp_lr_scheduler,
                           num_epochs=epochs)
        torch.save(model.state_dict(), 'model.pt')
        return model_ft
    
    def imshow(self,inp, title=None):
        """Display image for Tensor."""
        inp = inp.numpy().transpose((1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        inp = std * inp + mean
        inp = np.clip(inp, 0, 1)
        plt.imshow(inp)
        if title is not None:
            plt.title(title)
        plt.pause(0.001)
    
    def visualize_model(self,model, num_images=6):
        was_training = model.training
        model.eval()
        images_so_far = 0
        fig = plt.figure()

        with torch.no_grad():
            for i, (inputs, labels) in enumerate(self.dataloaders['val']):
                inputs = inputs.to(self.device)
                labels = labels.to(self.device)

                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)

                for j in range(inputs.size()[0]):
                    images_so_far += 1
                    ax = plt.subplot(num_images//2, 2, images_so_far)
                    ax.axis('off')
                    ax.set_title(f'predicted: {self.class_names[preds[j]]}')
                    self.imshow(inputs.cpu().data[j])

                    if images_so_far == num_images:
                        model.train(mode=was_training)
                        return
            model.train(mode=was_training)
            
    def pytorch_predict(self,model):
        '''
        Make prediction from a pytorch model 
        '''
        # set model to evaluate model
        
        model.eval()

        y_true = torch.tensor([], dtype=torch.long, device=self.device)
        all_outputs = torch.tensor([], device=self.device)

        # deactivate autograd engine and reduce memory usage and speed up computations
        with torch.no_grad():
            for data in self.dataloaders['test']:
                inputs = [i.to(self.device) for i in data[:-1]]
                labels = data[-1].to(self.device)

                outputs = model(*inputs)
                y_true = torch.cat((y_true, labels), 0)
                all_outputs = torch.cat((all_outputs, outputs), 0)

        y_true = y_true.cpu().numpy()  
        _, y_pred = torch.max(all_outputs, 1)
        y_pred = y_pred.cpu().numpy()
        y_pred_prob = F.softmax(all_outputs, dim=1).cpu().numpy()

        return y_true, y_pred, y_pred_prob