Spaces:
Sleeping
Sleeping
title: seqeval | |
emoji: 🤗 | |
colorFrom: blue | |
colorTo: red | |
sdk: gradio | |
sdk_version: 3.19.1 | |
app_file: app.py | |
pinned: false | |
tags: | |
- evaluate | |
- metric | |
description: >- | |
seqeval is a Python framework for sequence labeling evaluation. | |
seqeval can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, semantic role labeling and so on. | |
This is well-tested by using the Perl script conlleval, which can be used for | |
measuring the performance of a system that has processed the CoNLL-2000 shared task data. | |
seqeval supports following formats: | |
IOB1 | |
IOB2 | |
IOE1 | |
IOE2 | |
IOBES | |
See the [README.md] file at https://github.com/chakki-works/seqeval for more information. | |
# Metric Card for seqeval | |
Modified version of [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) metric that include optional Fβ score. | |
## Metric description | |
seqeval is a Python framework for sequence labeling evaluation. seqeval can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, semantic role labeling and so on. | |
## How to use | |
Seqeval produces labelling scores along with its sufficient statistics from a source against one or more references. | |
It takes two mandatory arguments: | |
`predictions`: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger. | |
`references`: a list of lists of reference labels, i.e. the ground truth/target values. | |
It can also take several optional arguments: | |
`beta`: the weight beta of micro Fβ-score | |
`suffix` (boolean): `True` if the IOB tag is a suffix (after type) instead of a prefix (before type), `False` otherwise. The default value is `False`, i.e. the IOB tag is a prefix (before type). | |
`scheme`: the target tagging scheme, which can be one of [`IOB1`, `IOB2`, `IOE1`, `IOE2`, `IOBES`, `BILOU`]. The default value is `None`. | |
`mode`: whether to count correct entity labels with incorrect I/B tags as true positives or not. If you want to only count exact matches, pass `mode="strict"` and a specific `scheme` value. The default is `None`. | |
`sample_weight`: An array-like of shape (n_samples,) that provides weights for individual samples. The default is `None`. | |
`zero_division`: Which value to substitute as a metric value when encountering zero division. Should be one of [`0`,`1`,`"warn"`]. `"warn"` acts as `0`, but the warning is raised. | |
```python | |
>>> seqeval = evaluate.load('seqeval') | |
>>> predictions = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] | |
>>> references = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] | |
>>> results = seqeval.compute(predictions=predictions, references=references) | |
``` | |
## Output values | |
This metric returns a dictionary with a summary of scores for overall and per type: | |
Overall: | |
`accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. | |
`precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. | |
`recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. | |
`f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. | |
`fbeta`: the micro Fβ score. | |
Per type (e.g. `MISC`, `PER`, `LOC`,...): | |
`precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. | |
`recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. | |
`f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. | |
`fbeta`: the micro Fβ score. | |
### Values from popular papers | |
The 1995 "Text Chunking using Transformation-Based Learning" [paper](https://aclanthology.org/W95-0107) reported a baseline recall of 81.9% and a precision of 78.2% using non Deep Learning-based methods. | |
More recently, seqeval continues being used for reporting performance on tasks such as [named entity detection](https://www.mdpi.com/2306-5729/6/8/84/htm) and [information extraction](https://ieeexplore.ieee.org/abstract/document/9697942/). | |
## Examples | |
Maximal values (full match) : | |
```python | |
>>> seqeval = evaluate.load('seqeval') | |
>>> predictions = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] | |
>>> references = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] | |
>>> results = seqeval.compute(predictions=predictions, references=references) | |
>>> print(results) | |
{'MISC': {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}, 'PER': {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}, 'overall_precision': 1.0, 'overall_recall': 1.0, 'overall_f1': 1.0, 'overall_accuracy': 1.0} | |
``` | |
Minimal values (no match): | |
```python | |
>>> seqeval = evaluate.load('seqeval') | |
>>> predictions = [['O', 'B-MISC', 'I-MISC'], ['B-PER', 'I-PER', 'O']] | |
>>> references = [['B-MISC', 'O', 'O'], ['I-PER', '0', 'I-PER']] | |
>>> results = seqeval.compute(predictions=predictions, references=references) | |
>>> print(results) | |
{'MISC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}, 'PER': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}, '_': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}, 'overall_precision': 0.0, 'overall_recall': 0.0, 'overall_f1': 0.0, 'overall_accuracy': 0.0} | |
``` | |
Partial match: | |
```python | |
>>> seqeval = evaluate.load('seqeval') | |
>>> predictions = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] | |
>>> references = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] | |
>>> results = seqeval.compute(predictions=predictions, references=references) | |
>>> print(results) | |
{'MISC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}, 'PER': {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}, 'overall_precision': 0.5, 'overall_recall': 0.5, 'overall_f1': 0.5, 'overall_accuracy': 0.8} | |
``` | |
## Limitations and bias | |
seqeval supports following IOB formats (short for inside, outside, beginning) : `IOB1`, `IOB2`, `IOE1`, `IOE2`, `IOBES`, `IOBES` (only in strict mode) and `BILOU` (only in strict mode). | |
For more information about IOB formats, refer to the [Wikipedia page](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)) and the description of the [CoNLL-2000 shared task](https://aclanthology.org/W02-2024). | |
## Citation | |
```bibtex | |
@inproceedings{ramshaw-marcus-1995-text, | |
title = "Text Chunking using Transformation-Based Learning", | |
author = "Ramshaw, Lance and | |
Marcus, Mitch", | |
booktitle = "Third Workshop on Very Large Corpora", | |
year = "1995", | |
url = "https://www.aclweb.org/anthology/W95-0107", | |
} | |
``` | |
```bibtex | |
@misc{seqeval, | |
title={{seqeval}: A Python framework for sequence labeling evaluation}, | |
url={https://github.com/chakki-works/seqeval}, | |
note={Software available from https://github.com/chakki-works/seqeval}, | |
author={Hiroki Nakayama}, | |
year={2018}, | |
} | |
``` | |
## Further References | |
- [README for seqeval at GitHub](https://github.com/chakki-works/seqeval) | |
- [CoNLL-2000 shared task](https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt) | |