|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import transformers |
|
from transformers import AutoTokenizer,GenerationConfig |
|
import torch |
|
from peft import PeftModel |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
from util.llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope |
|
replace_llama_rope_with_scaled_rope() |
|
base_model = "Neko-Institute-of-Science/LLaMA-65B-HF" |
|
lora_weights = "adapter_config.json" |
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
torch_dtype=torch.float16, |
|
cache_dir=cache_dir, |
|
device_map="auto", |
|
) |
|
|
|
model = PeftModel.from_pretrained( |
|
model, |
|
lora_weights, |
|
device_map="auto", |
|
cache_dir=cache_dir, |
|
torch_dtype=torch.float16, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir) |
|
tokenizer.pad_token = tokenizer.unk_token |
|
model.eval() |
|
PROMPT_DICT = { |
|
"prompt_input": ( |
|
"Below is an instruction that describes a task, paired with further context. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"Instruction:\n{instruction}\n\n Input:\n{input}\n\n Response:" |
|
), |
|
"prompt_no_input": ( |
|
"Below is an instruction that describes a task. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"Instruction:\n{instruction}\n\nResponse:" |
|
), |
|
} |
|
|
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return PROMPT_DICT["prompt_input"].format(instruction=instruction,input=input) |
|
else: |
|
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
ins_f = generate_prompt(instruction,input) |
|
inputs = tokenizer(ins_f, return_tensors="pt") |
|
input_ids = inputs["input_ids"].cuda() |
|
generation_config = GenerationConfig( |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
do_sample=True, |
|
num_beams=1, |
|
max_new_tokens = 512 |
|
) |
|
|
|
|
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=False, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
response = output.split("Response:")[1].strip() |
|
yield response |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|