Spaces:
Runtime error
Runtime error
# Copyright (c) Microsoft Corporation. | |
# Licensed under the MIT License. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from models.networks.base_network import BaseNetwork | |
from models.networks.normalization import get_nonspade_norm_layer | |
from models.networks.architecture import ResnetBlock as ResnetBlock | |
from models.networks.architecture import SPADEResnetBlock as SPADEResnetBlock | |
from models.networks.architecture import SPADEResnetBlock_non_spade as SPADEResnetBlock_non_spade | |
class SPADEGenerator(BaseNetwork): | |
def modify_commandline_options(parser, is_train): | |
parser.set_defaults(norm_G="spectralspadesyncbatch3x3") | |
parser.add_argument( | |
"--num_upsampling_layers", | |
choices=("normal", "more", "most"), | |
default="normal", | |
help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator", | |
) | |
return parser | |
def __init__(self, opt): | |
super().__init__() | |
self.opt = opt | |
nf = opt.ngf | |
self.sw, self.sh = self.compute_latent_vector_size(opt) | |
print("The size of the latent vector size is [%d,%d]" % (self.sw, self.sh)) | |
if opt.use_vae: | |
# In case of VAE, we will sample from random z vector | |
self.fc = nn.Linear(opt.z_dim, 16 * nf * self.sw * self.sh) | |
else: | |
# Otherwise, we make the network deterministic by starting with | |
# downsampled segmentation map instead of random z | |
if self.opt.no_parsing_map: | |
self.fc = nn.Conv2d(3, 16 * nf, 3, padding=1) | |
else: | |
self.fc = nn.Conv2d(self.opt.semantic_nc, 16 * nf, 3, padding=1) | |
if self.opt.injection_layer == "all" or self.opt.injection_layer == "1": | |
self.head_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt) | |
else: | |
self.head_0 = SPADEResnetBlock_non_spade(16 * nf, 16 * nf, opt) | |
if self.opt.injection_layer == "all" or self.opt.injection_layer == "2": | |
self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt) | |
self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf, opt) | |
else: | |
self.G_middle_0 = SPADEResnetBlock_non_spade(16 * nf, 16 * nf, opt) | |
self.G_middle_1 = SPADEResnetBlock_non_spade(16 * nf, 16 * nf, opt) | |
if self.opt.injection_layer == "all" or self.opt.injection_layer == "3": | |
self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf, opt) | |
else: | |
self.up_0 = SPADEResnetBlock_non_spade(16 * nf, 8 * nf, opt) | |
if self.opt.injection_layer == "all" or self.opt.injection_layer == "4": | |
self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf, opt) | |
else: | |
self.up_1 = SPADEResnetBlock_non_spade(8 * nf, 4 * nf, opt) | |
if self.opt.injection_layer == "all" or self.opt.injection_layer == "5": | |
self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf, opt) | |
else: | |
self.up_2 = SPADEResnetBlock_non_spade(4 * nf, 2 * nf, opt) | |
if self.opt.injection_layer == "all" or self.opt.injection_layer == "6": | |
self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf, opt) | |
else: | |
self.up_3 = SPADEResnetBlock_non_spade(2 * nf, 1 * nf, opt) | |
final_nc = nf | |
if opt.num_upsampling_layers == "most": | |
self.up_4 = SPADEResnetBlock(1 * nf, nf // 2, opt) | |
final_nc = nf // 2 | |
self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1) | |
self.up = nn.Upsample(scale_factor=2) | |
def compute_latent_vector_size(self, opt): | |
if opt.num_upsampling_layers == "normal": | |
num_up_layers = 5 | |
elif opt.num_upsampling_layers == "more": | |
num_up_layers = 6 | |
elif opt.num_upsampling_layers == "most": | |
num_up_layers = 7 | |
else: | |
raise ValueError("opt.num_upsampling_layers [%s] not recognized" % opt.num_upsampling_layers) | |
sw = opt.load_size // (2 ** num_up_layers) | |
sh = round(sw / opt.aspect_ratio) | |
return sw, sh | |
def forward(self, input, degraded_image, z=None): | |
seg = input | |
if self.opt.use_vae: | |
# we sample z from unit normal and reshape the tensor | |
if z is None: | |
z = torch.randn(input.size(0), self.opt.z_dim, dtype=torch.float32, device=input.get_device()) | |
x = self.fc(z) | |
x = x.view(-1, 16 * self.opt.ngf, self.sh, self.sw) | |
else: | |
# we downsample segmap and run convolution | |
if self.opt.no_parsing_map: | |
x = F.interpolate(degraded_image, size=(self.sh, self.sw), mode="bilinear") | |
else: | |
x = F.interpolate(seg, size=(self.sh, self.sw), mode="nearest") | |
x = self.fc(x) | |
x = self.head_0(x, seg, degraded_image) | |
x = self.up(x) | |
x = self.G_middle_0(x, seg, degraded_image) | |
if self.opt.num_upsampling_layers == "more" or self.opt.num_upsampling_layers == "most": | |
x = self.up(x) | |
x = self.G_middle_1(x, seg, degraded_image) | |
x = self.up(x) | |
x = self.up_0(x, seg, degraded_image) | |
x = self.up(x) | |
x = self.up_1(x, seg, degraded_image) | |
x = self.up(x) | |
x = self.up_2(x, seg, degraded_image) | |
x = self.up(x) | |
x = self.up_3(x, seg, degraded_image) | |
if self.opt.num_upsampling_layers == "most": | |
x = self.up(x) | |
x = self.up_4(x, seg, degraded_image) | |
x = self.conv_img(F.leaky_relu(x, 2e-1)) | |
x = F.tanh(x) | |
return x | |
class Pix2PixHDGenerator(BaseNetwork): | |
def modify_commandline_options(parser, is_train): | |
parser.add_argument( | |
"--resnet_n_downsample", type=int, default=4, help="number of downsampling layers in netG" | |
) | |
parser.add_argument( | |
"--resnet_n_blocks", | |
type=int, | |
default=9, | |
help="number of residual blocks in the global generator network", | |
) | |
parser.add_argument( | |
"--resnet_kernel_size", type=int, default=3, help="kernel size of the resnet block" | |
) | |
parser.add_argument( | |
"--resnet_initial_kernel_size", type=int, default=7, help="kernel size of the first convolution" | |
) | |
# parser.set_defaults(norm_G='instance') | |
return parser | |
def __init__(self, opt): | |
super().__init__() | |
input_nc = 3 | |
# print("xxxxx") | |
# print(opt.norm_G) | |
norm_layer = get_nonspade_norm_layer(opt, opt.norm_G) | |
activation = nn.ReLU(False) | |
model = [] | |
# initial conv | |
model += [ | |
nn.ReflectionPad2d(opt.resnet_initial_kernel_size // 2), | |
norm_layer(nn.Conv2d(input_nc, opt.ngf, kernel_size=opt.resnet_initial_kernel_size, padding=0)), | |
activation, | |
] | |
# downsample | |
mult = 1 | |
for i in range(opt.resnet_n_downsample): | |
model += [ | |
norm_layer(nn.Conv2d(opt.ngf * mult, opt.ngf * mult * 2, kernel_size=3, stride=2, padding=1)), | |
activation, | |
] | |
mult *= 2 | |
# resnet blocks | |
for i in range(opt.resnet_n_blocks): | |
model += [ | |
ResnetBlock( | |
opt.ngf * mult, | |
norm_layer=norm_layer, | |
activation=activation, | |
kernel_size=opt.resnet_kernel_size, | |
) | |
] | |
# upsample | |
for i in range(opt.resnet_n_downsample): | |
nc_in = int(opt.ngf * mult) | |
nc_out = int((opt.ngf * mult) / 2) | |
model += [ | |
norm_layer( | |
nn.ConvTranspose2d(nc_in, nc_out, kernel_size=3, stride=2, padding=1, output_padding=1) | |
), | |
activation, | |
] | |
mult = mult // 2 | |
# final output conv | |
model += [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(nc_out, opt.output_nc, kernel_size=7, padding=0), | |
nn.Tanh(), | |
] | |
self.model = nn.Sequential(*model) | |
def forward(self, input, degraded_image, z=None): | |
return self.model(degraded_image) | |