manika07 commited on
Commit
987f7bc
Β·
1 Parent(s): 4666190

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -22
app.py CHANGED
@@ -43,30 +43,30 @@ st.subheader("You can tag your input CSV file of theses and dissertations with L
43
 
44
  tab1, tab2, tab3 = st.tabs(["πŸ“ˆ Load Data", "πŸ“ƒ Tagged ETDs", "πŸ““ Download Data"])
45
  with tab1:
46
- #===load data===
47
- if uploaded_file is not None:
48
- df = pd.read_csv(uploaded_file, encoding='latin-1')
49
- st.dataframe(df)
50
 
51
 
52
  with tab2:
53
- #===tagged ETDs===
54
- # Tag the "Abstract" column with the corresponding categories
55
- df['category'] = df['Abstract'].apply(predict_category)
56
- st.dataframe(df)
57
- # Function to predict the category for a given abstract
58
- def predict_category(abstract):
59
- # Preprocess the abstract
60
- abstract_preprocessed = preprocessing.transform([abstract])
61
- # Make prediction
62
- prediction = svm_classifier.predict(abstract_preprocessed)
63
- return prediction
64
 
65
  with tab3:
66
- #===download result===
67
- # Create a download button
68
- if st.sidebar.button("Download"):
69
- csv = df.to_csv(index=False)
70
- b64 = base64.b64encode(csv.encode()).decode()
71
- href = f'<a href="data:file/csv;base64,{b64}" download="results.csv">Download csv file</a>'
72
- st.markdown(href, unsafe_allow_html=True)
 
43
 
44
  tab1, tab2, tab3 = st.tabs(["πŸ“ˆ Load Data", "πŸ“ƒ Tagged ETDs", "πŸ““ Download Data"])
45
  with tab1:
46
+ #===load data===
47
+ if uploaded_file is not None:
48
+ df = pd.read_csv(uploaded_file, encoding='latin-1')
49
+ st.dataframe(df)
50
 
51
 
52
  with tab2:
53
+ #===tagged ETDs===
54
+ # Tag the "Abstract" column with the corresponding categories
55
+ df['category'] = df['Abstract'].apply(predict_category)
56
+ st.dataframe(df)
57
+ # Function to predict the category for a given abstract
58
+ def predict_category(abstract):
59
+ # Preprocess the abstract
60
+ abstract_preprocessed = preprocessing.transform([abstract])
61
+ # Make prediction
62
+ prediction = svm_classifier.predict(abstract_preprocessed)
63
+ return prediction
64
 
65
  with tab3:
66
+ #===download result===
67
+ # Create a download button
68
+ if st.sidebar.button("Download"):
69
+ csv = df.to_csv(index=False)
70
+ b64 = base64.b64encode(csv.encode()).decode()
71
+ href = f'<a href="data:file/csv;base64,{b64}" download="results.csv">Download csv file</a>'
72
+ st.markdown(href, unsafe_allow_html=True)