Muhammadreza's picture
Update app.py
2e721a4 verified
raw
history blame
1.51 kB
import spaces
import gradio as gr
import torch
import modin.pandas as pd
import numpy as np
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("mann-e/Mann-E_Dreams", torch_dtype=torch.float16)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
else:
pipe = DiffusionPipeline.from_pretrained("mann-e/Mann-E_Dreams", use_safetensors=True)
pipe = pipe.to(device)
@spaces.GPU
def genie (prompt, negative_prompt, steps, seed):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
int_image = pipe(prompt=prompt, negative_prompt=negative_prompt, generator=generator, num_inference_steps=steps, guidance_scale=0.0).images[0]
return int_image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 75 Token Limit.'),
gr.Textbox(label='What you DO NOT want the AI to generate. 75 Token Limit.'),
gr.Slider(1, maximum=8, value=6, step=1, label='Number of Iterations'),
gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=True),
],
outputs='image',
title="Mann-E Dreams",
description="Mann-E Dreams <br><br><b>WARNING: This model is capable of producing NSFW (Softcore) images.</b>",
article = "").launch(debug=True, max_threads=80)