rag-ros2 / app.py
mannadamay12's picture
Update app.py
55bd66e verified
raw
history blame
4.1 kB
import os
import spaces
import gradio as gr
import torch
torch.jit.script = lambda f: f # Avoid script error in lambda
# Initialize non-GPU components first
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
# System prompts
DEFAULT_SYSTEM_PROMPT = """
Based on the information in this document provided in context, answer the question as accurately as possible in 1 or 2 lines. If the information is not in the context,
respond with "I don't know" or a similar acknowledgment that the answer is not available.
""".strip()
SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. Do not provide commentary or elaboration more than 1 or 2 lines.?"
def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>
{prompt} [/INST]
""".strip()
template = generate_prompt(
"""
{context}
Question: {question}
""",
system_prompt=SYSTEM_PROMPT,
)
prompt_template = PromptTemplate(template=template, input_variables=["context", "question"])
# Initialize database and embeddings
embeddings = HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-base",
model_kwargs={"device": "cpu"}
)
db = Chroma(
persist_directory="db",
embedding_function=embeddings
)
def initialize_model():
from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
from langchain.llms import HuggingFacePipeline
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
)
if torch.cuda.is_available():
model = model.to("cuda")
return model, tokenizer
@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
try:
# Initialize model components inside GPU context
model, tokenizer = initialize_model()
from transformers import TextStreamer, pipeline
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.15,
streamer=streamer,
)
llm = HuggingFacePipeline(pipeline=text_pipeline)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 2}),
return_source_documents=False,
chain_type_kwargs={"prompt": prompt_template}
)
response = qa_chain.invoke({"query": message})
yield response["result"]
except Exception as e:
yield f"An error occurred: {str(e)}"
# Create Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Message",
lines=3,
visible=False
),
gr.Slider(
minimum=1,
maximum=2048,
value=500,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.1,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
title="ROS2 Expert Assistant",
description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)
if __name__ == "__main__":
demo.launch()