Spaces:
Sleeping
Sleeping
File size: 4,103 Bytes
3438e5b 55bd66e 26b862a 85b8a02 d30c02a 26b862a 5eddda9 55bd66e cbe2d25 55bd66e cbe2d25 55bd66e cbe2d25 26b862a 55bd66e 26b862a d30c02a 55bd66e cbe2d25 55bd66e cbe2d25 55bd66e cbe2d25 26b862a cbe2d25 d30c02a 96d766a d30c02a 96d766a d30c02a 85b8a02 d30c02a 96d766a d30c02a 96d766a d30c02a 85b8a02 96d766a d30c02a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import os
import spaces
import gradio as gr
import torch
torch.jit.script = lambda f: f # Avoid script error in lambda
# Initialize non-GPU components first
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
# System prompts
DEFAULT_SYSTEM_PROMPT = """
Based on the information in this document provided in context, answer the question as accurately as possible in 1 or 2 lines. If the information is not in the context,
respond with "I don't know" or a similar acknowledgment that the answer is not available.
""".strip()
SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. Do not provide commentary or elaboration more than 1 or 2 lines.?"
def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>
{prompt} [/INST]
""".strip()
template = generate_prompt(
"""
{context}
Question: {question}
""",
system_prompt=SYSTEM_PROMPT,
)
prompt_template = PromptTemplate(template=template, input_variables=["context", "question"])
# Initialize database and embeddings
embeddings = HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-base",
model_kwargs={"device": "cpu"}
)
db = Chroma(
persist_directory="db",
embedding_function=embeddings
)
def initialize_model():
from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
from langchain.llms import HuggingFacePipeline
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
)
if torch.cuda.is_available():
model = model.to("cuda")
return model, tokenizer
@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
try:
# Initialize model components inside GPU context
model, tokenizer = initialize_model()
from transformers import TextStreamer, pipeline
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.15,
streamer=streamer,
)
llm = HuggingFacePipeline(pipeline=text_pipeline)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 2}),
return_source_documents=False,
chain_type_kwargs={"prompt": prompt_template}
)
response = qa_chain.invoke({"query": message})
yield response["result"]
except Exception as e:
yield f"An error occurred: {str(e)}"
# Create Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Message",
lines=3,
visible=False
),
gr.Slider(
minimum=1,
maximum=2048,
value=500,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.1,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
title="ROS2 Expert Assistant",
description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)
if __name__ == "__main__":
demo.launch() |