File size: 4,103 Bytes
3438e5b
55bd66e
 
 
 
 
 
26b862a
85b8a02
d30c02a
26b862a
5eddda9
55bd66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe2d25
55bd66e
 
cbe2d25
 
 
 
 
 
 
 
 
 
55bd66e
 
 
cbe2d25
26b862a
55bd66e
26b862a
d30c02a
55bd66e
cbe2d25
55bd66e
cbe2d25
55bd66e
cbe2d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b862a
 
cbe2d25
d30c02a
 
96d766a
d30c02a
96d766a
 
 
d30c02a
 
85b8a02
 
 
d30c02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d766a
 
 
 
 
d30c02a
96d766a
 
d30c02a
85b8a02
96d766a
 
 
d30c02a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import spaces
import gradio as gr
import torch
torch.jit.script = lambda f: f  # Avoid script error in lambda

# Initialize non-GPU components first
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA

# System prompts
DEFAULT_SYSTEM_PROMPT = """
Based on the information in this document provided in context, answer the question as accurately as possible in 1 or 2 lines. If the information is not in the context,
respond with "I don't know" or a similar acknowledgment that the answer is not available.
""".strip()

SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. Do not provide commentary or elaboration more than 1 or 2 lines.?"

def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
    return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>

{prompt} [/INST]
""".strip()

template = generate_prompt(
    """
{context}

Question: {question}
""",
    system_prompt=SYSTEM_PROMPT,
)

prompt_template = PromptTemplate(template=template, input_variables=["context", "question"])

# Initialize database and embeddings
embeddings = HuggingFaceInstructEmbeddings(
    model_name="hkunlp/instructor-base",
    model_kwargs={"device": "cpu"}
)

db = Chroma(
    persist_directory="db",
    embedding_function=embeddings
)

def initialize_model():
    from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
    from langchain.llms import HuggingFacePipeline
    
    model_id = "meta-llama/Llama-3.2-3B-Instruct"
    token = os.environ.get("HF_TOKEN")
    
    tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        token=token,
    )
    
    if torch.cuda.is_available():
        model = model.to("cuda")
    
    return model, tokenizer

@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
    try:
        # Initialize model components inside GPU context
        model, tokenizer = initialize_model()
        from transformers import TextStreamer, pipeline
        
        streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        text_pipeline = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            repetition_penalty=1.15,
            streamer=streamer,
        )
        
        llm = HuggingFacePipeline(pipeline=text_pipeline)
        qa_chain = RetrievalQA.from_chain_type(
            llm=llm,
            chain_type="stuff",
            retriever=db.as_retriever(search_kwargs={"k": 2}),
            return_source_documents=False,
            chain_type_kwargs={"prompt": prompt_template}
        )
        
        response = qa_chain.invoke({"query": message})
        yield response["result"]
        
    except Exception as e:
        yield f"An error occurred: {str(e)}"

# Create Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value=DEFAULT_SYSTEM_PROMPT,
            label="System Message",
            lines=3,
            visible=False
        ),
        gr.Slider(
            minimum=1,
            maximum=2048,
            value=500,
            step=1,
            label="Max new tokens"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.1,
            step=0.1,
            label="Temperature"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        ),
    ],
    title="ROS2 Expert Assistant",
    description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)

if __name__ == "__main__":
    demo.launch()