Spaces:
Sleeping
Sleeping
File size: 1,289 Bytes
3327b8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the CogVideoX model and tokenizer
@st.cache_resource
def load_model():
model_name = "THUDM/CogVideoX-5b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
tokenizer, model = load_model()
# Streamlit interface
st.title("Text to Video Generator using CogVideoX-5b")
# Input text prompt from user
prompt = st.text_input("Enter a text prompt for video generation:", "")
# Button to generate the video
if st.button("Generate Video"):
if prompt:
with st.spinner("Generating video..."):
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs)
# Assuming video output is a tensor; simulate video path
video_path = "generated_video.mp4"
with open(video_path, "wb") as f:
f.write(output[0].cpu().numpy()) # Example write operation (modify this as per the actual model's output)
st.video(video_path)
else:
st.warning("Please enter a prompt before generating the video.")
# Footer
st.write("Powered by THUDM/CogVideoX-5b and Streamlit")
|