|
import streamlit as st
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
from PIL import Image
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
model_path = "flower-model.keras"
|
|
model = tf.keras.models.load_model(model_path)
|
|
|
|
|
|
def predict_flower(image):
|
|
|
|
image = image.resize((150, 150))
|
|
image = image.convert('RGB')
|
|
image = np.array(image)
|
|
image = np.expand_dims(image, axis=0)
|
|
|
|
|
|
prediction = model.predict(image)
|
|
|
|
|
|
probabilities = tf.nn.softmax(prediction, axis=1)
|
|
|
|
|
|
class_names = ['daisy', 'dandelion', 'rose','sunflower','tulip']
|
|
probabilities_dict = {flower_class: round(float(probability), 2) for flower_class, probability in zip(class_names, probabilities.numpy()[0])}
|
|
|
|
return probabilities_dict
|
|
|
|
|
|
st.title("Bluemen erkenner")
|
|
st.write("Welche Blume wächst in ihrem Garten?")
|
|
|
|
|
|
uploaded_image = st.file_uploader("Lade dein Bild hoch...", type=["jpg", "png"])
|
|
|
|
if uploaded_image is not None:
|
|
image = Image.open(uploaded_image)
|
|
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
|
st.write("")
|
|
st.write("Identifiezieren...")
|
|
|
|
predictions = predict_flower(image)
|
|
|
|
|
|
st.write("### Prediction Probabilities")
|
|
df = pd.DataFrame(predictions.items(), columns=["Flower", "Probability"])
|
|
st.dataframe(df)
|
|
|
|
|
|
|
|
st.sidebar.title("Examples")
|
|
example_images = ["Blume/rose.png", "Blume/sunflower.png", "Blume/dandelion.png"]
|
|
for example_image in example_images:
|
|
st.sidebar.image(example_image, use_column_width=True)
|
|
|